Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Virology ; 522: 228-233, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30053656

RESUMEN

Zika virus (ZIKV) has been identified as a cause of neurologic diseases in infants and Guillain-Barré Syndrome, and currently, no therapeutics or vaccines are approved. In this study, we sought to identify potential host proteins interacting with ZIKV particles to gain better insights into viral infectivity. Viral particles were purified through density-gradient centrifugation and subsequently, size-exclusion chromatography (SEC). Mass spectrometric analyses revealed viral envelope protein and HSP70 to comigrate in only one SEC fraction. Neither of these proteins were found in any other SEC fractions. We then performed neutralization assays and found that incubating viral particles with antibody against HSP70 indeed significantly reduced viral infectivity, while HSC70 antibody did not. Preincubating cells with recombinant HSP70 also decreased viral infectivity. Knockdown and inhibition of HSP70 also significantly diminished viral production. These results implicate HSP70 in the pathogenesis of ZIKV and identify HSP70 as a potential host therapeutic target against ZIKV infection.


Asunto(s)
Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Interacciones Huésped-Patógeno , Virión/aislamiento & purificación , Virus Zika/aislamiento & purificación , Animales , Línea Celular , Centrifugación por Gradiente de Densidad , Cromatografía en Gel , Humanos , Espectrometría de Masas
2.
J Cell Death ; 11: 1179066018785141, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30034249

RESUMEN

Patients with chronic hepatitis C virus (HCV) infection risk complications of cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Previously, our proteomic examination of hepatocytes carrying a HCV-replicon revealed that deregulation of cytoskeletal dynamics may be a potential mechanism of viral-induced HCC growth. Here, we demonstrate the effect of HCV replication on the microtubule regulator stathmin (STMN1) in HCC cells. We further explore how the altered activity or synthesis of stathmin affects cellular proliferation and sensitivity to apoptosis in control HCC cells (Huh7.5) and experimental HCV-replicon harboring HCC cells (R-Huh7.5). The HCV-replicon harboring HCC cells (R-Huh 7.5) lack viral structural genes/proteins for acute infectivity and thus is the standard model for in vitro chronic infection study. Knockdown of endogenous stathmin reduced sensitivity to apoptosis in replicon cells. Meanwhile, constitutively active stathmin increased sensitivity to apoptosis in replicon cells. In addition, overexpression of constitutively active stathmin reduced cell proliferation in both control and replicon cells. These findings implicate, for the first time, a novel role for stathmin in viral replication-related apoptosis. Stathmin's potential role in HCV replication and HCC make it a candidate for the future study of viral-induced malignancies.

3.
Int J Antimicrob Agents ; 47(4): 289-96, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27013001

RESUMEN

The human molecular chaperones heat shock protein 70 (Hsp70) and heat shock cognate protein 70 (Hsc70) bind to the hepatitis C viral nonstructural protein 5A (NS5A) and regulate its activity. Specifically, Hsp70 is involved in NS5A-augmented internal ribosomal entry site (IRES)-mediated translation of the viral genome, whilst Hsc70 appears to be primarily important for intracellular infectious virion assembly. To better understand the importance of these two chaperones in the viral life cycle, infected human cells were treated with allosteric Hsp70/Hsc70 inhibitors (AHIs). Treatment with AHIs significantly reduced the production of intracellular virus at concentrations that were non-toxic to human hepatoma Huh7.5 cells. The supernatant of treated cultures was then used to infect naïve cells, revealing that AHIs also lowered levels of secreted virus. In contrast to their effects on virion assembly, AHIs did not impact the stability of NS5A or viral protein translation in IRES assays. These results suggest that Hsc70 plays a particularly important and sensitive role in virion assembly. Indeed, it was found that combination of AHIs with a peptide-based viral translation inhibitor exhibited additive antiviral activity. Together these results suggest that the host Hsc70 is a new antiviral target and that its inhibitors utilise a new mechanism of action.


Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Ensamble de Virus/efectos de los fármacos , Antivirales/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/toxicidad , Proteínas del Choque Térmico HSC70/antagonistas & inhibidores , Proteínas del Choque Térmico HSC70/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Hepatocitos/virología , Humanos
4.
Virology ; 475: 46-55, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25462345

RESUMEN

We previously identified the NS5A/HSP70 binding site to be a hairpin moiety at C-terminus of NS5A domain I and showed a corresponding cyclized polyarginine-tagged synthetic peptide (HCV4) significantly blocks virus production. Here, sequence comparison confirmed five residues to be conserved. Based on NS5A domain I crystal structure, Phe171, Val173, and Tyr178 were predicted to form the binding interface. Substitution of Phe171 and Val173 with more hydrophobic unusual amino acids improved peptide antiviral activity and HSP70 binding, while similar substitutions at Tyr178 had a negative effect. Substitution of non-conserved residues with arginines maintained antiviral activity and HSP70 binding and dispensed with polyarginine tag for cellular entry. Peptide cyclization improved antiviral activity and HSP70 binding. The cyclic retro-inverso analog displayed the best antiviral properties. FTIR spectroscopy confirmed a secondary structure consisting of an N-terminal beta-sheet followed by a turn and a C-terminal beta-sheet. These peptides constitute a new class of anti-HCV compounds.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Hepacivirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Línea Celular , Secuencia Conservada , Proteínas HSP70 de Choque Térmico/genética , Humanos , Modelos Moleculares , Plásmidos , Conformación Proteica , Estructura Terciaria de Proteína , Espectroscopía Infrarroja por Transformada de Fourier , Resonancia por Plasmón de Superficie , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
5.
Virology ; 454-455: 118-27, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24725938

RESUMEN

We previously identified HSP70 and HSC70 in complex with NS5A in a proteomic screen. Here, coimmunoprecipitation studies confirmed NS5A/HSC70 complex formation during infection, and immunofluorescence studies showed NS5A and HSC70 to colocalize. Unlike HSP70, HSC70 knockdown did not decrease viral protein levels. Rather, intracellular infectious virion assembly was significantly impaired by HSC70 knockdown. We also discovered that both HSC70 nucleotide binding and substrate binding domains directly bind NS5A whereas only the HSP70 nucleotide binding domain does. Knockdown of both HSC70 and HSP70 demonstrated an additive reduction in virus production. This data suggests that HSC70 and HSP70 play discrete roles in the viral life cycle. Investigation of these different functions may facilitate developing of novel strategies that target host proteins to treat HCV infection.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas no Estructurales Virales/metabolismo , Humanos , Inmunoprecipitación , Microscopía Confocal , Unión Proteica , Ensamble de Virus , Replicación Viral
6.
Virology ; 433(2): 346-55, 2012 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-22975673

RESUMEN

We have previously demonstrated that quercetin, a bioflavonoid, blocks hepatitis C virus (HCV) proliferation by inhibiting NS5A-driven internal ribosomal entry site (IRES)-mediated translation of the viral genome. Here, we investigate the mechanisms of antiviral activity of quercetin and six additional bioflavonoids. We demonstrate that catechin, naringenin, and quercetin possess significant antiviral activity, with no associated cytotoxicity. Infectious virion secretion was not significantly altered by these bioflavonoids. Catechin and naringenin demonstrated stronger inhibition of infectious virion assembly compared to quercetin. Quercetin markedly blocked viral translation whereas catechin and naringenin demonstrated mild activity. Similarly quercetin completely blocked NS5A-augmented IRES-mediated translation in an IRES reporter assay, whereas catechin and naringenin had only a mild effect. Moreover, quercetin differentially inhibited HSP70 induction compared to catechin and naringenin. Thus, the antiviral activity of these bioflavonoids is mediated through different mechanisms. Therefore combination of these bioflavonoids may act synergistically against HCV.


Asunto(s)
Antivirales/farmacología , Flavonoides/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Antivirales/química , Catequina/farmacología , Línea Celular , Flavanonas/farmacología , Flavonoides/química , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Hepacivirus/genética , Hepacivirus/patogenicidad , Humanos , Pruebas de Sensibilidad Microbiana , Biosíntesis de Proteínas/efectos de los fármacos , Quercetina/farmacología , Proteínas no Estructurales Virales/fisiología , Proteínas Virales/biosíntesis , Ensamble de Virus/efectos de los fármacos
7.
Hepatology ; 55(6): 1662-72, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22183951

RESUMEN

UNLABELLED: NS5A is a key regulator of the hepatitis C virus (HCV) life cycle including RNA replication, assembly, and translation. We and others have shown that NS5A augments HCV internal ribosomal entry site (IRES)-mediated translation. Furthermore, Quercetin treatment and heat shock protein (HSP) 70 knockdown inhibit the NS5A-driven augmentation of IRES-mediated translation and infectious virus production. We have also coimmunoprecipitated HSP70 with NS5A and demonstrated cellular colocalization, leading to the hypothesis that the NS5A/HSP70 complex formation is important for IRES-mediated translation. Here, we have identified the NS5A region responsible for complex formation through in vitro deletion analyses. Deletion of NS5A domains II and III failed to reduce HSP70 binding, whereas domain I deletion eliminated complex formation. NS5A domain I alone also bound HSP70. Deletion mapping of domain I identified the C-terminal 34 amino acids (C34) as the interaction site. Furthermore, addition of C34 to domains II and III restored complex formation. C34 expression significantly reduced intracellular viral protein levels, in contrast to same-size control peptides from other NS5A domains. C34 also competitively inhibited NS5A-augmented IRES-mediated translation, whereas controls did not. Triple-alanine scan mutagenesis determined that an exposed beta-sheet hairpin in C34 was primarily responsible for NS5A-augmented IRES-mediated translation. Moreover, treatment with a 10-amino acid peptide derivative of C34 suppressed NS5A-augmented IRES-mediated translation and significantly inhibited intracellular viral protein synthesis, with no associated cytotoxicity. CONCLUSION: These results support the hypothesis that the NS5A/HSP70 complex augments viral IRES-mediated translation, identify a sequence-specific hairpin element in NS5A responsible for complex formation, and demonstrate the functional significance of C34 hairpin-mediated NS5A/HSP70 interaction. Identification of this element may allow for further interrogation of NS5A-mediated IRES activity, sequence-specific HSP recognition, and rational drug design. (HEPATOLOGY 2012;55:1662-1672).


Asunto(s)
Fragmentos de Péptidos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Sitios de Unión , Células Cultivadas , Diseño de Fármacos , Proteínas HSP70 de Choque Térmico/química , Humanos , Estructura Terciaria de Proteína , Ribosomas/química , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
8.
Cell Host Microbe ; 9(4): 286-98, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21501828

RESUMEN

Virus entry into cells is typically initiated by binding of virally encoded envelope proteins to specific cell surface receptors. Studying infectivity of lentivirus pseudotypes lacking envelope binding, we still observed high infectivity for some cell types. On further investigation, we discovered that this infectivity is conferred by the soluble bovine protein S in fetal calf serum, or Gas6, its human homolog. Gas6 enhances native infectivity of pseudotypes of multiple viral envelope proteins. Gas6 mediates binding of the virus to target cells by bridging virion envelope phosphatidylserine to Axl, a TAM receptor tyrosine kinase on target cells. Phagocytic clearance of apoptotic cells is known to involve bridging by Gas6. Replication of vaccinia virus, which was previously reported to use apoptotic mimicry to enter cells, is also enhanced by Gas6. These results reveal an alternative molecular mechanism of viral entry that can broaden host range and enhance infectivity of enveloped viruses.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fosfatidilserinas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Humanos , Fagocitosis/fisiología , Proteína S/metabolismo , Receptores de Superficie Celular , Homología de Secuencia de Aminoácido , Virus Vaccinia/fisiología , Acoplamiento Viral , Tirosina Quinasa del Receptor Axl
9.
Proc Natl Acad Sci U S A ; 107(7): 3157-62, 2010 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-20133606

RESUMEN

We describe an antiviral small molecule, LJ001, effective against numerous enveloped viruses including Influenza A, filoviruses, poxviruses, arenaviruses, bunyaviruses, paramyxoviruses, flaviviruses, and HIV-1. In sharp contrast, the compound had no effect on the infection of nonenveloped viruses. In vitro and in vivo assays showed no overt toxicity. LJ001 specifically intercalated into viral membranes, irreversibly inactivated virions while leaving functionally intact envelope proteins, and inhibited viral entry at a step after virus binding but before virus-cell fusion. LJ001 pretreatment also prevented virus-induced mortality from Ebola and Rift Valley fever viruses. Structure-activity relationship analyses of LJ001, a rhodanine derivative, implicated both the polar and nonpolar ends of LJ001 in its antiviral activity. LJ001 specifically inhibited virus-cell but not cell-cell fusion, and further studies with lipid biosynthesis inhibitors indicated that LJ001 exploits the therapeutic window that exists between static viral membranes and biogenic cellular membranes with reparative capacity. In sum, our data reveal a class of broad-spectrum antivirals effective against enveloped viruses that target the viral lipid membrane and compromises its ability to mediate virus-cell fusion.


Asunto(s)
Antivirales/farmacología , Rodanina/análogos & derivados , Virosis/tratamiento farmacológico , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/uso terapéutico , Femenino , Ratones , Ratones Endogámicos BALB C , Rodanina/química , Rodanina/farmacología , Rodanina/uso terapéutico , Relación Estructura-Actividad , Proteínas del Envoltorio Viral/metabolismo
10.
Hepatology ; 50(6): 1756-64, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19839005

RESUMEN

UNLABELLED: The hepatitis C viral (HCV) genome is translated through an internal ribosome entry site (IRES) as a single polyprotein precursor that is subsequently cleaved into individual mature viral proteins. Nonstructural protein 5A (NS5A) is one of these proteins that has been implicated in regulation of viral genome replication, translation from the viral IRES and viral packaging. We sought to identify cellular proteins that interact with NS5A and determine whether these interactions may play a role in viral production. Mass spectrometric analysis of coimmunoprecipitated NS5A complexes from cell extracts identified heat shock proteins (HSPs) 40 and 70. We confirmed an NS5A/HSP interaction by confocal microscopy demonstrating colocalization of NS5A with HSP40 and with HSP70. Western analysis of coimmunoprecipitated NS5A complexes further confirmed interaction of HSP40 and HSP70 with NS5A. A transient transfection, luciferase-based, tissue culture IRES assay demonstrated NS5A augmentation of HCV IRES-mediated translation, and small interfering RNA (siRNA)-mediated knockdown of HSP70 reduced this augmentation. Treatment with an inhibitor of HSP synthesis, Quercetin, markedly reduced baseline IRES activity and its augmentation by NS5A. HSP70 knockdown also modestly reduced viral protein accumulation, whereas HSP40 and HSP70 knockdown both reduced infectious viral particle production in an HCV cell culture system using the J6/JFH virus fused to the Renilla luciferase reporter. Treatment with Quercetin reduced infectious particle production at nontoxic concentrations. The marked inhibition of virus production by Quercetin may partially be related to reduction of HSP40 and HSP70 and their potential involvement in IRES translation, as well as viral morphogenesis or secretion. CONCLUSION: Quercetin may allow for dissection of the viral life cycle and has potential therapeutic use to reduce virus production with low associated toxicity.


Asunto(s)
Proteínas de Choque Térmico/antagonistas & inhibidores , Hepacivirus/efectos de los fármacos , Quercetina/farmacología , Línea Celular , Proteínas de Choque Térmico/metabolismo , Hepacivirus/fisiología , Humanos , ARN Interferente Pequeño/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
11.
Virology ; 394(1): 82-90, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19740508

RESUMEN

Hepatitis C virus (HCV) infection frequently leads to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. There is no effective therapy or vaccine available to HCV-infected patients other than interferon-ribavarin combination, which is effective in a relatively small percentage of infected patients. Our previous results have shown that a synthetic peptide (LAP) corresponding to the N-terminal 18 amino acids of the Lupus autoantigen (La) was a potent inhibitor of HCV IRES-mediated translation. We demonstrate here that LAP efficiently blocks HCV replication of infectious JFH1 virus in cell culture. Our data suggest that LAP forms complexes with IRES-transacting factors (ITAFs) PTB and PCBP2. LAP-mediated inhibition of HCV IRES-mediated translation in vitro could be fully rescued by recombinant PCB and PCBP2. Also transient expression of PTB / PCBP2 combination significantly restores HCV replication in LAP-inhibited cultures. These results suggest that ITAFs could be potential targets to block HCV replication.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Péptidos/farmacología , Proteína de Unión al Tracto de Polipirimidina/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Replicación Viral/efectos de los fármacos , Antivirales/farmacocinética , Autoantígenos/genética , Línea Celular , Hepacivirus/fisiología , Humanos , Péptidos/farmacocinética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Antígeno SS-B
12.
Cancer Res ; 69(5): 2057-64, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19223538

RESUMEN

Hepatitis C virus (HCV) causes chronic infection in humans leading to liver cirrhosis and hepatocellular carcinoma. rRNA transcription, catalyzed by RNA polymerase I (Pol I), plays a critical role in ribosome biogenesis, and changes in Pol I transcription rate are associated with profound alterations in the growth rate of the cell. Because rRNA synthesis is intimately linked to cell growth and frequently up-regulated in many cancers, we hypothesized that HCV might have the ability to activate rRNA synthesis in infected cells. We show here that rRNA promoter-mediated transcription is significantly (10- to 12-fold) activated in human liver-derived cells following infection with type 2 JFH-1 HCV or transfection with the subgenomic type 1 HCV replicon. Further analysis revealed that HCV nonstructural protein 5A (NS5A) was responsible for activation of rRNA transcription. Both the NH(2)-terminal amphipathic helix and the polyproline motifs of NS5A seem to be essential for rRNA transcription activation. The NS5A-dependent activation of rRNA transcription seems to be due to hyperphosphorylation and consequent activation of upstream binding factor (UBF), a Pol I DNA binding transcription factor. We further show that hyperphosphorylation of UBF occurs as a result of up-regulation of both cyclin D1 and cyclin-dependent kinase 4 by the HCV NS5A polypeptide. These results suggest that the endoplasmic reticulum-associated NS5A is able to transduce signals into the nucleoplasm via UBF hyperphosphorylation leading to rRNA transcription activation. These results could, at least in part, explain a mechanism by which HCV contributes to transformation of liver cells.


Asunto(s)
Ciclina D1/fisiología , Hepacivirus/fisiología , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Ribosómico/biosíntesis , Transcripción Genética , Células Cultivadas , Ciclina D1/análisis , Quinasa 4 Dependiente de la Ciclina/análisis , ADN Polimerasa I/genética , Humanos , Fosforilación , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/fisiología
13.
PLoS Pathog ; 4(10): e1000182, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18927624

RESUMEN

Hepatitis C virus is a leading cause of human liver disease worldwide. Recent discovery of the JFH-1 isolate, capable of infecting cell culture, opens new avenues for studying HCV replication. We describe the development of a high-throughput, quantitative, genome-scale, mutational analysis system to study the HCV cis-elements and protein domains that are essential for virus replication. An HCV library with 15-nucleotide random insertions was passaged in cell culture to examine the effect of insertions at each genome location by insertion-specific fluorescent-PCR profiling. Of 2399 insertions identified in 9517 nucleotides of the genome, 374, 111, and 1914 were tolerated, attenuating, and lethal, respectively, for virus replication. Besides identifying novel functional domains, this approach confirmed other functional domains consistent with previous studies. The results were validated by testing several individual mutant viruses. Furthermore, analysis of the 3' non-translated variable region revealed a spacer role in virus replication, demonstrating the utility of this approach for functional discovery. The high-resolution functional profiling of HCV domains lays the foundation for further mechanistic studies and presents new therapeutic targets as well as topological information for designing vaccine candidates.


Asunto(s)
Perfilación de la Expresión Génica , Genoma Viral , Hepacivirus/genética , Región de Flanqueo 5' , Algoritmos , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Perfilación de la Expresión Génica/métodos , Biblioteca Genómica , Genómica/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Insercional , Conformación de Ácido Nucleico , Proteínas Virales/genética , Proteínas Virales/fisiología , Replicación Viral/genética
14.
Biochem Biophys Res Commun ; 350(3): 788-95, 2006 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-17027912

RESUMEN

A small inhibitor RNA (IRNA) isolated from yeast has previously been shown to efficiently block poliovirus and hepatitis C virus IRES-mediated translation by sequestering mammalian RNA-binding (transacting) factors that play important roles in cap-independent translation. Here we have investigated the IRNA-binding proteins that might be involved in cap-independent translation in the yeast Saccharomyces cerevisiae. We have identified Zuotin, a DnaJ chaperone protein similar to mammalian HSP-40 chaperone, which interacts strongly with IRNA. Using ZUO1-deleted S. cerevisiae, we demonstrate a preferential requirement of Zuo1p for cap-independent translation mediated by the 5' untranslated region of the yeast TFIID mRNA. Further studies using zuo1delta S. cerevisiae complemented with various Zuo1p mutants indicate that the DnaJ domain of Zuo1p, known to influence its interaction with HSP-70, significantly affects cap-independent translation. These results demonstrate for the first time a role for an established chaperone protein in cap-independent translation of a cellular mRNA.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Modificación Traduccional de las Proteínas/fisiología , Proteínas de Unión a Caperuzas de ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Chaperonas Moleculares , Isoformas de Proteínas/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética
15.
J Gen Virol ; 86(Pt 8): 2315-2322, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16033979

RESUMEN

Soon after infection, poliovirus (PV) shuts off host-cell transcription, which is catalysed by all three cellular RNA polymerases. rRNA constitutes more than 50 % of all cellular RNA and is transcribed from rDNA by RNA polymerase I (pol I). Here, evidence has been provided suggesting that both pol I transcription factors, SL-1 (selectivity factor) and UBF (upstream binding factor), are modified and inactivated in PV-infected cells. The viral protease 3C(pro) appeared to cleave the TATA-binding protein-associated factor 110 (TAF(110)), a subunit of the SL-1 complex, into four fragments in vitro. In vitro protease-cleavage assays using various mutants of TAF(110) and purified 3C(pro) indicated that the Q(265)G(266) and Q(805)G(806) sites were cleaved by 3C(pro). Both SL-1 and UBF were depleted in PV-infected cells and their disappearance correlated with pol I transcription inhibition. rRNA synthesis from a template containing a human pol I promoter demonstrated that both SL-1 and UBF were necessary to restore pol I transcription fully in PV-infected cell extracts. These results suggested that both SL-1 and UBF are transcriptionally inactivated in PV-infected HeLa cells.


Asunto(s)
ADN Ribosómico/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Poliovirus/enzimología , ARN Polimerasa I/antagonistas & inhibidores , Transcripción Genética , Proteasas Virales 3C , Cisteína Endopeptidasas/metabolismo , Glutamina , Glicina , Células HeLa , Humanos , Regiones Promotoras Genéticas , ARN Polimerasa I/genética , Factores Asociados con la Proteína de Unión a TATA/química , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/química , Factor de Transcripción TFIID/metabolismo , Proteínas Virales/metabolismo
16.
J Virol ; 79(15): 9702-13, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16014932

RESUMEN

The TATA-binding protein (TBP) plays a crucial role in cellular transcription catalyzed by all three DNA-dependent RNA polymerases. Previous studies have shown that TBP is targeted by the poliovirus (PV)-encoded protease 3C(pro) to bring about shutoff of cellular RNA polymerase II-mediated transcription in PV-infected cells. The processing of the majority of viral precursor proteins by 3C(pro) involves cleavages at glutamine-glycine (Q-G) sites. We present evidence that suggests that the transcriptional inactivation of TBP by 3C(pro) involves cleavage at the glutamine 104-serine 105 (Q104-S105) site of TBP and not at the Q18-G19 site as previously thought. The TBP Q104-S105 cleavage by 3C(pro) is greatly influenced by the presence of an aliphatic amino acid at the P4 position, a hallmark of 3C(pro)-mediated proteolysis. To examine the importance of host cell transcription shutoff in the PV life cycle, stable HeLa cell lines were created that express recombinant TBP resistant to cleavage by the viral proteases, called GG rTBP. Transcription shutoff was significantly impaired and delayed in GG rTBP cells upon infection with poliovirus compared with the cells that express wild-type recombinant TBP (wt rTBP). Infection of GG rTBP cells with poliovirus resulted in small plaques, significantly reduced viral RNA synthesis, and lower viral yields compared to the wt rTBP cell line. These results suggest that a defect in transcription shutoff can lead to inefficient replication of poliovirus in cultured cells.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Regulación Viral de la Expresión Génica , Poliovirus/fisiología , ARN Polimerasa II/metabolismo , Proteína de Unión a TATA-Box/genética , Transcripción Genética , Proteínas Virales/metabolismo , Replicación Viral , Proteasas Virales 3C , Secuencia de Aminoácidos , Glutamina , Células HeLa/metabolismo , Humanos , Datos de Secuencia Molecular , Poliovirus/enzimología , Poliovirus/genética , Proteínas/genética , Serina , Proteína de Unión a TATA-Box/metabolismo
17.
J Infect Dis ; 191(9): 1498-506, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15809909

RESUMEN

Hepatitis C virus (HCV) core protein plays a significant role in the alteration of cellular gene expression. We expressed HCV core protein using a tetracycline-inducible expression system in HeLa cell lines. Profiles of gene expression in cells expressing the HCV core protein were compared with those in control cells by use of microarray analysis. Cells expressing the HCV core protein showed 86 down-regulated and 41 up-regulated genes, compared with control cells. One gene affected was cyclooxygenase 2 (COX-2). Levels of both COX-2 RNA and the Cox-2 protein were significantly inhibited after the expression of HCV core protein in HeLa cells. Similar results were obtained in hepatoma cells and in a functional assay that measured the production of the Cox-2 protein in response to a mitogenic stimulus. The inhibition of the Cox-2 protein could serve as a means of muting the cellular inflammatory response during HCV infection. Correlation of these findings with analysis of clinical specimens from chronically infected patients should lend further significance to the down-regulation of the inflammatory response via Cox-2.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Hepacivirus , Prostaglandina-Endoperóxido Sintasas/genética , Proteínas del Núcleo Viral/farmacología , Secuencia de Bases , Clonación Molecular , Ciclooxigenasa 2 , Cartilla de ADN , Células HeLa , Hepatitis C/enzimología , Hepatitis C/fisiopatología , Humanos , Inflamación , Proteínas de la Membrana , Transfección
18.
J Virol ; 78(17): 9243-56, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15308719

RESUMEN

Poliovirus-encoded nonstructural polypeptide 2C is a multifunctional protein that plays an important role in viral RNA replication. 2C interacts with both intracellular membranes and virus-specific RNAs and has ATPase and GTPase activities. Extensive computer analysis of the 2C sequence revealed that in addition to the known ATPase-, GTPase-, membrane-, and RNA-binding domains it also contains several "serpin" (serine protease inhibitor) motifs. We provide experimental evidence suggesting that 2C is indeed capable of regulating virus-encoded proteases. The purified 2C protein inhibits 3C(pro)-catalyzed cleavage of cellular transcription factors at Q-G sites in vitro. It also inhibits cleavage of a viral precursor by the other viral protease, 2A(pro). However, at least three cellular proteases appear not to be inhibited by 2C in vitro. The 2C-associated protease inhibitory activity can be depleted by anti-2C antibody. A physical interaction between 2C and His-tagged 3C(pro) can be demonstrated in vitro by coimmunoprecipitation of 2C with anti-His antibody. Deletion analysis suggests that the 2C central and C-terminal domains that include several serpin motifs are important for 3C(pro)-inhibitory activity. To examine the 2C protease inhibitory activity in vivo, stable HeLa cell lines were made that express 2C in an inducible fashion. Infection of 2C-expressing cells with poliovirus led to incomplete (or inefficient) processing of viral precursor polypeptides compared to control cell lines containing the vector alone. These results suggest that 2C can negatively regulate the viral protease 3C(pro). The possible role of the 2C protease inhibitory activity in viral RNA replication is discussed.


Asunto(s)
Proteínas Portadoras/metabolismo , Cisteína Endopeptidasas/metabolismo , Péptidos/metabolismo , Poliovirus/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/metabolismo , Proteasas Virales 3C , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Anticuerpos Antivirales/inmunología , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Catálisis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Enteropeptidasa/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Péptidos/química , Péptidos/genética , Péptidos/inmunología , Poliovirus/enzimología , Poliovirus/genética , Poliovirus/fisiología , Unión Proteica , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , ARN Polimerasa II/metabolismo , ARN Viral/biosíntesis , ARN Viral/genética , Eliminación de Secuencia/genética , Serpinas/química , Trombina/metabolismo , Transcripción Genética , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/inmunología
19.
FEMS Microbiol Lett ; 234(2): 189-99, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15135522

RESUMEN

A number of RNA-containing viruses such as hepatitis C (HCV) and poliovirus (PV) that infect human beings and cause serious diseases use a common mechanism for synthesis of viral proteins, termed internal ribosome entry site (IRES)-mediated translation. This mode of translation initiation involves entry of 40S ribosome internally to the 5' untranslated region (UTR) of viral RNA. Cap-dependent translation of cellular mRNAs, on the other hand, requires recognition of mRNA 5' cap by the translation machinery. In this review, we discuss two inhibitors that specifically inhibit viral IRES-mediated translation without interfering with cellular cap-dependent translation. We present evidence, which suggest that one of these inhibitors, a small RNA (called IRNA) originally isolated from the yeast Saccharomyces cerevisiae, inhibits viral IRES-mediated translation by sequestering both noncanonical transacting factors and canonical initiation factors required for IRES-mediated translation. The other inhibitor, a small peptide from the lupus autoantigen La (called LAP), appears to block binding of cellular transacting factors to viral IRES elements. These results suggest that it might be possible to target viral IRES-mediated translation for future development of therapeutic agents effective against a number of RNA viruses including HCV that exclusively use cap-independent translation for synthesis of viral proteins.


Asunto(s)
Hepacivirus/genética , Biosíntesis de Proteínas/genética , Virus ARN/genética , Ribosomas/fisiología , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Ribosomas/genética , Antígeno SS-B
20.
Virology ; 320(2): 195-205, 2004 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-15016543

RESUMEN

Host cell transcription mediated by all three RNA polymerases is rapidly inhibited after infection of mammalian cells with poliovirus (PV). Both genetic and biochemical studies have shown that the virus-encoded protease 3C cleaves the TATA-binding protein and other transcription factors at glutamine-glycine sites and is directly responsible for host cell transcription shut-off. PV replicates in the cytoplasm of infected cells. To shut-off host cell transcription, 3C or a precursor of 3C must enter the nucleus of infected cells. Although the 3C protease itself lacks a nuclear localization signal (NLS), amino acid sequence examination of 3D identified a potential single basic type NLS, KKKRD, spanning amino acids 125-129 within this polypeptide. Thus, a plausible scenario is that 3C enters the nucleus in the form of its precursor, 3CD, which then generates 3C by auto-proteolysis ultimately leading to cleavage of transcription factors in the nucleus. Using transient transfection of enhanced green fluorescent protein (EGFP) fusion polypeptides, we demonstrate here that both 3CD and 3D are capable of entering the nucleus in PV-infected cells. However, both polypeptides remain in the cytoplasm in uninfected HeLa cells. Mutagenesis of the NLS sequence in 3D prevents nuclear entry of 3D and 3CD in PV-infected cells. We also demonstrate that 3CD can be detected in the nuclear fraction from PV-infected HeLa cells as early as 2 h postinfection. Significant amount of 3CD is found associated with the nuclear fraction by 3-4 h of infection. Taken together, these results suggest that both the 3D NLS and PV infection are required for the entry of 3CD into the nucleus and that this may constitute a means by which viral protease 3C is delivered into the nucleus leading to host cell transcription shut-off.


Asunto(s)
Núcleo Celular/metabolismo , Cisteína Endopeptidasas/metabolismo , Regulación de la Expresión Génica , Poliovirus/patogenicidad , Precursores de Proteínas/metabolismo , Proteínas Virales/metabolismo , Proteasas Virales 3C , Cisteína Endopeptidasas/genética , ARN Polimerasas Dirigidas por ADN , Proteínas Fluorescentes Verdes , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Poliovirus/enzimología , Poliovirus/genética , Precursores de Proteínas/genética , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transcripción Genética , Transfección , Proteínas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA