Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 146(34): 23909-23922, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39137357

RESUMEN

Platinum exhibits desirable catalytic properties, but it is scarce and expensive. Optimizing its use in key applications such as emission control catalysis is important to reduce our reliance on such a rare element. Supported Pt nanoparticles (NPs) used in emission control systems deactivate over time because of particle growth in sintering processes. In this work, we shed light on the stability against sintering of Pt NPs supported on and encapsulated in Al2O3 using a combination of nanocrystal catalysts and atomic layer deposition (ALD) techniques. We find that small amounts of alumina overlayers created by ALD on preformed Pt NPs can stabilize supported Pt catalysts, significantly reducing deactivation caused by sintering, as previously observed by others. Combining theoretical and experimental insights, we correlate this behavior to the decreased propensity of oxidized Pt species to undergo Ostwald ripening phenomena because of the physical barrier imposed by the alumina overlayers. Furthermore, we find that highly stable catalysts can present an abundance of under-coordinated Pt sites after restructuring of both Pt particles and alumina overlayers at a high temperature (800 °C) in C3H6 oxidation conditions. The enhanced stability significantly improves the Pt utilization efficiency after accelerated aging treatments, with encapsulated Pt catalysts reaching reaction rates more than two times greater than those of a control supported Pt catalyst.

2.
J Colloid Interface Sci ; 676: 485-495, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39047376

RESUMEN

This work describes the application of Cu single-atom catalysts (SACs) for photocatalytic oxidative dehydrogenation of N-heterocyclic amines to the respective N-heteroaromatics through environmentally benign and sustainable pathways. The mesoporous graphitic carbon nitride (mpg-C3N4), prepared by the one-step pyrolysis method, possesses a lightweight material with a high surface area (95 m2 g-1) and an average pore diameter (3.6 nm). A simple microwave-assisted preparation method was employed to decorate Cu single-atom over mpg-C3N4 support. The Cu single-atom decorated on mpg-C3N4 support (Cu@mpg-C3N4) is characterized by various characterization techniques, including XRD, UV-visible spectrophotometry, HRTEM, HAADF-STEM with elemental mapping, AC-STEM, ICP-OES, XANES, EXAFS, and BET surface area. These characterization studies confirmed that the Cu@mpg-C3N4 catalyst exhibited high surface area, mesoporous nature, medium band gap, and low metal loading. The as-synthesized and well-characterized Cu@mpg-C3N4 single-atom photocatalyst is then evaluated for its efficacy in converting N-heterocycles into corresponding N-heteroaromatic compounds with excellent conversion and selectivity (>99 %). This transformation is achieved using water as a green solvent and a 30 W white light as a visible light source, demonstrating the catalyst's potential for sustainable and environmentally benign reactions.

3.
Nat Commun ; 15(1): 1234, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336891

RESUMEN

Identification of active sites in catalytic materials is important and helps establish approaches to the precise design of catalysts for achieving high reactivity. Generally, active sites of conventional heterogeneous catalysts can be single atom, nanoparticle or a metal/oxide interface. Herein, we report that metal/oxide reverse interfaces can also be active sites which are created from the coordinated migration of metal and oxide atoms. As an example, a Pd1/CeO2 single-atom catalyst prepared via atom trapping, which is otherwise inactive at 30 °C, is able to completely oxidize formaldehyde after steam treatment. The enhanced reactivity is due to the formation of a Ce2O3-Pd nanoparticle domain interface, which is generated by the migration of both Ce and Pd atoms on the atom-trapped Pd1/CeO2 catalyst during steam treatment. We show that the generation of metal oxide-metal interfaces can be achieved in other heterogeneous catalysts due to the coordinated mobility of metal and oxide atoms, demonstrating the formation of a new active interface when using metal single-atom material as catalyst precursor.

4.
Small ; 20(26): e2308166, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38321841

RESUMEN

The formation mechanism(s) of high-index facets in metal oxides is not widely understood but remains a topic of interest owing to the challenges of stabilizing high-energy surfaces. These metal oxide crystal surfaces are expected to provide unique physicochemical characteristics; therefore, understanding crystallization pathways may enable the rational design of materials with controlled properties. Here the crystallization of NiO via thermal decomposition of a nickel source in excess of alkali chlorides is examined, focusing on KCl, which produces trapezohedral NiO (311) particles that are difficult to achieve through alternative methods. Trapezohedral NiO crystals are confirmed to grow via a molten eutectic where NiO nucleation is followed by nonclassical crystallization through processes resembling colloidal assembly. Aggregates comprised of NiO nanocrystals form mesostructures that ripen with heating time and exhibit fewer grain boundaries as they transition into single-crystalline particles. At temperatures higher than those of NiO crystallization, there is a restructuring of (311) facets into microfacets exposing (111) and (100) surfaces. These findings illustrate the complex crystallization processes taking place during molten salt synthesis. The ability to generate metal oxide particles with high-index facets has the potential to be a more generalized approach to unlock the physicochemical properties of materials for diverse applications.

5.
Nanoscale Adv ; 5(17): 4553-4562, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37638151

RESUMEN

2D nanoscale confined systems exhibit behavior that is markedly different from that observed at the macroscale. Confinement can be tuned by controlling the interlayer spacing between confining layers using organic dithiol linkers. Adjusting spacing and selective intercalation have important impacts for catalysis, superconductivity, spin engineering, sodium ion batteries, 2D magnets, optoelectronics, and many other applications. In this study, we report how reaction conditions and organic linkers can be used to create variable, reproducible spacings between graphene oxide to provide confinement systems. We determined the conditions under which the spacing can be variably adjusted by the type of linker used, the concentration of the linker, and the reaction conditions. Employing dithiol linkers of different lengths, such as three (TPDT) and four (QPDT) aromatic rings, we can adjust the spacing between graphene oxide layers under varied reaction conditions. Here, we show that by varying dithiol linker length and using different reaction conditions, we can reproducibly control the spacing between graphene oxide layers from 0.37 nm to over 0.50 nm.

6.
Microsc Microanal ; 29(Supplement_1): 1566-1568, 2023 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-37613667
9.
Chemphyschem ; 24(14): e202300244, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37294161

RESUMEN

Olefin oligomerization by γ-Al2 O3 has recently been reported, and it was suggested that Lewis acid sites are catalytic. The goal of this study is to determine the number of active sites per gram of alumina to confirm that Lewis acid sites are indeed catalytic. Addition of an inorganic Sr oxide base resulted in a linear decrease in the propylene oligomerization conversion at loadings up to 0.3 wt %; while, there is a >95 % loss in conversion above 1 wt % Sr. Additionally, there was a linear decrease in the intensity of the Lewis acid peaks of absorbed pyridine in the IR spectra with an increase in Sr loading, which correlates with the loss in propylene conversion, suggesting that Lewis acid sites are catalytic. Characterization of the Sr structure by XAS and STEM indicates that single Sr2+ ions are bound to the γ-Al2 O3 surface and poison one catalytic site per Sr ion. The maximum loading needed to poison all catalytic sites, assuming uniform surface coverage, was ∼0.4 wt % Sr, giving an acid site density of ∼0.2 sites per nm2 of γ-Al2 O3 , or approximately 3 % of the alumina surface.

10.
Nat Commun ; 14(1): 2664, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160890

RESUMEN

Single atoms of platinum group metals on CeO2 represent a potential approach to lower precious metal requirements for automobile exhaust treatment catalysts. Here we show the dynamic evolution of two types of single-atom Pt (Pt1) on CeO2, i.e., adsorbed Pt1 in Pt/CeO2 and square planar Pt1 in PtATCeO2, fabricated at 500 °C and by atom-trapping method at 800 °C, respectively. Adsorbed Pt1 in Pt/CeO2 is mobile with the in situ formation of few-atom Pt clusters during CO oxidation, contributing to high reactivity with near-zero reaction order in CO. In contrast, square planar Pt1 in PtATCeO2 is strongly anchored to the support during CO oxidation leading to relatively low reactivity with a positive reaction order in CO. Reduction of both Pt/CeO2 and PtATCeO2 in CO transforms Pt1 to Pt nanoparticles. However, both catalysts retain the memory of their initial Pt1 state after reoxidative treatments, which illustrates the importance of the initial single-atom structure in practical applications.

11.
Nat Nanotechnol ; 17(2): 110-111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35145284

Asunto(s)
Soledad
12.
Angew Chem Int Ed Engl ; 60(50): 26054-26062, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34346155

RESUMEN

A single-atom Pt1 /CeO2 catalyst formed by atom trapping (AT, 800 °C in air) shows excellent thermal stability but is inactive for CO oxidation at low temperatures owing to over-stabilization of Pt2+ in a highly symmetric square-planar Pt1 O4 coordination environment. Reductive activation to form Pt nanoparticles (NPs) results in enhanced activity; however, the NPs are easily oxidized, leading to drastic activity loss. Herein we show that tailoring the local environment of isolated Pt2+ by thermal-shock (TS) synthesis leads to a highly active and thermally stable Pt1 /CeO2 catalyst. Ultrafast shockwaves (>1200 °C) in an inert atmosphere induced surface reconstruction of CeO2 to generate Pt single atoms in an asymmetric Pt1 O4 configuration. Owing to this unique coordination, Pt1 δ+ in a partially reduced state dynamically evolves during CO oxidation, resulting in exceptional low-temperature performance. CO oxidation reactivity on the Pt1 /CeO2 _TS catalyst was retained under oxidizing conditions.

13.
Adv Mater ; 33(50): e2004319, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33763927

RESUMEN

Single-atom catalysts (SACs) have attracted extensive attention in fields related to energy, environment, and material sciences because of the high atom efficiency and the unique properties of these materials. Many approaches have hitherto been successfully established to prepare SACs, including impregnation, pyrolysis-involved processes, atom trapping, and coprecipitation. However, under typical reaction conditions, single atoms on catalysts tend to migrate or agglomerate, forming nanoclusters or nanoparticles, which lowers their surface free energy. Efforts are required to develop strategies for improving the thermal stability of SACs while achieving excellent catalytic performance. In this Progress Report, recent advances in the development of thermally durable single-atom heterogeneous catalysts are discussed. Several important preparation approaches for thermally stable SACs are described in this article. Fundamental understanding of the coordination structures of thermally stable single atom prepared by these methods is discussed. Furthermore, the catalytic performances of these thermally stable SACs are reviewed, including their activity and stability. Finally, a perspective of this important and rapidly evolving research field is provided.

15.
ACS Appl Mater Interfaces ; 13(7): 8120-8128, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33565850

RESUMEN

The chemical complexity of single-phase multicationic oxides, commonly termed high entropy oxides (HEOs), enables the integration of conventionally incompatible metal cations into a single-crystalline phase. However, few studies have effectively leveraged the multicationic nature of HEOs for optimization of disparate physical and chemical properties. Here, we apply the HEO concept to design robust oxidation catalysts in which multicationic oxide composition is tailored to simultaneously achieve catalytic activity, oxygen storage capacity, and thermal stability. Unlike conventional catalysts, HEOs maintain single-phase structure, even at high temperature, and do not rely on the addition of expensive platinum group metals (PGM) to be active. The HEOs are synthesized through a facile, relatively low temperature (500 °C) sol-gel method, which avoids excessive sintering and catalyst deactivation. Nanostructured high entropy oxides with surface areas as high as 138 m2/g are produced, marking a significant structural improvement over previously reported HEOs. Each HEO contained Ce in varying concentrations, as well as four other metals among Al, Fe, La, Mn, Nd, Pr, Sm, Y, and Zr. All samples adopted a fluorite structure. First row transition metal cations were most effective at improving CO oxidation activity, but their incorporation reduced thermal stability. Rare earth cations were necessary to prevent thermal deactivation while maintaining activity. In sum, our work demonstrates the utility of entropy in complex oxide design and a low-energy synthetic route to produce nanostructured HEOs with cations selected for a cooperative effect toward robust performance in chemically and physically demanding applications.

16.
Nat Mater ; 20(8): 1049-1059, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33020611

RESUMEN

Advances in engine technologies are placing additional demands on emission control catalysts, which must now perform at lower temperatures, but at the same time be robust enough to survive harsh conditions encountered in engine exhaust. In this Review, we explore some of the materials concepts that could revolutionize the technology of emission control systems. These include single-atom catalysts, two-dimensional materials, three-dimensional architectures, core@shell nanoparticles derived via atomic layer deposition and via colloidal synthesis methods, and microporous oxides. While these materials provide enhanced performance, they will need to overcome many challenges before they can be deployed for treating exhaust from cars and trucks. We assess the state of the art for catalysing reactions related to emission control and also consider radical breakthroughs that could potentially completely transform this field.

18.
Angew Chem Int Ed Engl ; 59(35): 15119-15123, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32302436

RESUMEN

Metal oxides exposing high-index facets are potentially impactful in catalysis and adsorption processes owing to under-coordinated ions and polarities that alter their interfacial properties compared to low-index facets. Here, we report molten-salt syntheses of NiO particles exposing a variety of crystal facets. We show that for a given anion (nitrate or chloride), the alkali cation has a notable impact on the formation of crystals exposing {311}, {611}, {100}, and {111} faces. Based on a parametric analysis of synthesis conditions, we postulate that the crystallization mechanism is governed by the formation of growth units consisting of NiII complexes whose coordination numbers are determined by temperature and the selection of anion (associated to the coordination sphere) and alkali cation (associated with the outer coordination sphere). Notably, our findings reveal that high-index facets are particularly favored in chloride media and are stable under prolonged periods of catalysis and steaming.

19.
Microsc Microanal ; 26(2): 229-239, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32157982

RESUMEN

Protocols for conducting in situ transmission electron microscopy (TEM) reactions using an environmental TEM with dry gases have been well established. However, many important reactions that are relevant to catalysis or high-temperature oxidation occur at atmospheric pressure and are influenced by the presence of water vapor. These experiments necessitate using a closed-cell gas reaction TEM holder. We have developed protocols for introducing and controlling water vapor concentrations in experimental gases from 2% at a full atmosphere to 100% at ~17 Torr, while measuring the gas composition using a residual gas analyzer (RGA) on the return side of the in situ gas reactor holder. Initially, as a model system, cube-shaped MgO crystals were used to help develop the protocols for handling the water vapor injection process and confirming that we could successfully inject water vapor into the gas cell. The interaction of water vapor with MgO triggered surface morphological and chemical changes as a result of the formation of Mg(OH)2, later validated with mass spectra obtained with our RGA system with and without water vapor. Integrating an RGA with an in situ scanning/TEM closed-cell gas reaction system can thus provide critical measurements correlating gas composition with dynamic surface restructuring of materials during reactions.

20.
Nat Nanotechnol ; 14(9): 817-818, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31406362
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA