Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(22): 222501, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38877923

RESUMEN

The known I^{π}=8_{1}^{+}, E_{x}=2129-keV isomer in the semimagic nucleus ^{130}Cd_{82} was populated in the projectile fission of a ^{238}U beam at the Radioactive Isotope Beam Factory at RIKEN. The high counting statistics of the accumulated data allowed us to determine the excitation energy, E_{x}=2001.2(7) keV, and half-life, T_{1/2}=57(3) ns, of the I^{π}=6_{1}^{+} state based on γγ coincidence information. Furthermore, the half-life of the 8_{1}^{+} state, T_{1/2}=224(4) ns, was remeasured with high precision. The new experimental information, combined with available data for ^{134}Sn and large-scale shell model calculations, allowed us to extract proton and neutron effective charges for ^{132}Sn, a doubly magic nucleus far-off stability. A comparison to analogous information for ^{100}Sn provides first reliable information regarding the isospin dependence of the isoscalar and isovector effective charges in heavy nuclei.

3.
Phys Rev Lett ; 124(11): 112501, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32242689

RESUMEN

The gyromagnetic factor of the low-lying E=251.96(9) keV isomeric state of the nucleus ^{99}Zr was measured using the time-dependent perturbed angular distribution technique. This level is assigned a spin and parity of J^{π}=7/2^{+}, with a half-life of T_{1/2}=336(5) ns. The isomer was produced and spin aligned via the abrasion-fission of a ^{238}U primary beam at RIKEN RIBF. A magnetic moment |µ|=2.31(14)µ_{N} was deduced showing that this isomer is not single particle in nature. A comparison of the experimental values with interacting boson-fermion model IBFM-1 results shows that this state is strongly mixed with a main νd_{5/2} composition. Furthermore, it was found that monopole single-particle evolution changes significantly with the appearance of collective modes, likely due to type-II shell evolution.

4.
Phys Rev Lett ; 115(17): 172501, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26551106

RESUMEN

Excited states of the neutron-rich nuclei (97,99)Rb were populated for the first time using the multistep Coulomb excitation of radioactive beams. Comparisons of the results with particle-rotor model calculations provide clear identification for the ground-state rotational band of (97)Rb as being built on the πg(9/2) [431] 3/2(+) Nilsson-model configuration. The ground-state excitation spectra of the Rb isotopes show a marked distinction between single-particle-like structures below N=60 and rotational bands above. The present study defines the limits of the deformed region around A∼100 and indicates that the deformation of (97)Rb is essentially the same as that observed well inside the deformed region. It further highlights the power of the Coulomb-excitation technique for obtaining spectroscopic information far from stability. The (99)Rb case demonstrates the challenges of studies with very short-lived postaccelerated radioactive beams.

6.
Phys Rev Lett ; 113(13): 132502, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25302883

RESUMEN

Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³8U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³6Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 41⁺ state with almost equal seniority 2 and 4 components, correctly reproducing the experimental B(E2;6⁺→4⁺) rate of ¹³6Sn. These data provide a key benchmark for shell-model interactions far from stability.

7.
Phys Rev Lett ; 112(13): 132501, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24745408

RESUMEN

A low-lying state in 131In82, the one-proton hole nucleus with respect to double magic 132Sn, was observed by its γ decay to the Iπ=1/2- ß-emitting isomer. We identify the new state at an excitation energy of Ex=1353 keV, which was populated both in the ß decay of 131Cd83 and after ß-delayed neutron emission from 132Cd84, as the previously unknown πp3/2 single-hole state with respect to the 132Sn core. Exploiting this crucial new experimental information, shell-model calculations were performed to study the structure of experimentally inaccessible N=82 isotones below 132Sn. The results evidence a surprising absence of proton subshell closures along the chain of N=82 isotones. The consequences of this finding for the evolution of the N=82 shell gap along the r-process path are discussed.

8.
Phys Rev Lett ; 109(9): 092503, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-23002828

RESUMEN

The 02(+) state in 34Si has been populated at the GANIL-LISE3 facility through the ß decay of a newly discovered 1(+) isomer in 34Al of 26(1) ms half-life. The simultaneous detection of e(+)e(-) pairs allowed the determination of the excitation energy E(02(+))=2719(3) keV and the half-life T(1/2)=19.4(7) ns, from which an electric monopole strength of ρ(2)(E0)=13.0(0.9)×10(-3) was deduced. The 2(1)(+) state is observed to decay both to the 0(1)(+) ground state and to the newly observed 0(2)(+) state [via a 607(2) keV transition] with a ratio R(2(1)(+)→0(1)(+)/2(1)(+)→0(2)(+))=1380(717). Gathering all information, a weak mixing with the 0(1)(+) and a large deformation parameter of ß=0.29(4) are found for the 0(2)(+) state, in good agreement with shell model calculations using a new SDPF-U-MIX interaction allowing np-nh excitations across the N=20 shell gap.

9.
Phys Rev Lett ; 108(16): 162501, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22680712

RESUMEN

We report on the spectroscopic quadrupole moment measurement of the 7/2(1)(-) isomeric state in (16)(43)S(27) [E*=320.5(5) keV, T(1/2)=415(3) ns], using the time dependent perturbed angular distribution technique at the RIKEN RIBF facility. Our value, |Q(s)|=23(3) efm(2), is larger than that expected for a single-particle state. Shell model calculations using the modern SDPF-U interaction for this mass region reproduce remarkably well the measured |Q(s)|, and show that non-negligible correlations drive the isomeric state away from a purely spherical shape.

10.
Phys Rev Lett ; 108(6): 062701, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22401060

RESUMEN

The neutron-rich nuclei 94,96Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2(+) states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(2(1)(+)) and B(E2;2(1)(+)→0(1)(+)) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

11.
Phys Rev Lett ; 105(10): 102501, 2010 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-20867514

RESUMEN

The structure of 44S has been studied by using delayed γ and electron spectroscopy. The decay rates of the 02+ isomeric state to the 2(1)+ and 0(1)+ states, measured for the first time, lead to a reduced transition probability B(E2: 2(1)+→0(2)+)=8.4(26) e(2) fm4 and a monopole strength ρ2(E0: 0(2)+→0(1)+)=8.7(7)×10(-3). Comparisons to shell model calculations point towards prolate-spherical shape coexistence, and a two-level mixing model is used to extract a weak mixing between the two configurations.

12.
Phys Rev Lett ; 102(9): 092501, 2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19392514

RESUMEN

We report on the g-factor measurement of the first isomeric state in (16)43S27 [Ex=320.5(5) keV, T1/2=415(5) ns, and g=0.317(4)]. The 7/2- spin-parity of the isomer and the intruder nature of the ground state of the nucleus are experimentally established for the first time, providing direct and unambiguous evidence of the collapse of the N=28 shell closure in neutron-rich nuclei. The shell model, beyond the mean-field and semiempirical calculations, provides a very consistent description of this nucleus showing that a well deformed prolate and quasispherical states coexist at low energy.

13.
Phys Rev Lett ; 96(23): 232501, 2006 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-16803374

RESUMEN

The reduced transition probabilities B(E2;0(+) --> 2(+)(1)) of the neutron-rich (74)Zn and (70)Ni nuclei have been measured by Coulomb excitation in a (208)Pb target at intermediate energy. These nuclei have been produced at Grand Accélérateur National d'Ions Lourds via interactions of a 60A MeV (76)Ge beam with a Be target. The B(E2) value for (70)Ni(42) is unexpectedly large, which indicates that neutrons added above N=40 strongly polarize the Z=28 proton core. In the Zn isotopic chain, the steep rise of B(E2) values beyond N=40 continues up to (74)Zn(44). The enhanced proton core polarization in (70)Ni is attributed to the monopole interaction between the neutron in the g(9/2) and protons in the f(7/2) and f(5/2) spin-orbit partner orbitals. This interaction could result in a weakening of magicity in (78)Ni(50).

14.
Phys Rev Lett ; 96(1): 012501, 2006 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-16486448

RESUMEN

To investigate the behavior of the N = 14 neutron gap far from stability with a neutron-sensitive probe, proton elastic and 2(1)+ inelastic scattering angular distributions for the neutron-rich nucleus 22O were measured using the MUr à STrip detector array at the Grand Accélérateur National d'Ions Lourds facility. A deformation parameter beta(p,p') = 0.26 +/- 0.04 is obtained for the 2(1)+ state, much lower than in 20O, showing a weak neutron contribution to this state. A microscopic analysis was performed using matter and transition densities generated by continuum Skyrme-Hartree-Fock-Bogoliubov and quasiparticle random phase approximation calculations, respectively. The ratio of neutron to proton contributions to the 2(1)+ state is found close to the N/Z ratio, demonstrating a strong N = 14 shell closure in the vicinity of the neutron drip line.

15.
Phys Rev Lett ; 93(14): 142503, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15524786

RESUMEN

We report on the g factor measurement of an isomer in the neutron-rich (61)(26)Fe (E(*)=861 keV and T(1/2)=239(5) ns). The isomer was produced and spin aligned via a projectile-fragmentation reaction at intermediate energy, the time dependent perturbed angular distribution method being used for the measurement of the g factor. For the first time, due to significant improvements of the experimental technique, an appreciable residual alignment of the nuclear spin ensemble has been observed, allowing a precise determination of its g factor, including the sign: g=-0.229(2). In this way we open the possibility to study moments of very neutron-rich short-lived isomers, not accessible via other production and spin-orientation methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA