Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Sci Technol Adv Mater ; 25(1): 2357062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835629

RESUMEN

Affordable and environmentally friendly electrochemically active raw energy storage materials are in high demand to switch to mass-scale renewable energy. One particularly promising avenue is the feasibility of utilizing food waste-derived nanoporous carbon. This material holds significance due to its widespread availability, affordability, ease of processing, and, notably, its cost-free nature. Over the years, various strategies have been developed to convert different food wastes into nanoporous carbon materials with enhanced electrochemical properties. The electrochemical performance of these materials is influenced by both intrinsic factors, such as the composition of elements derived from the original food sources and recipes, and extrinsic factors, including the conditions during pyrolysis and activation. While current efforts are dedicated to optimizing process parameters to achieve superior performance in electrochemical energy storage devices, it is timely to take stock of the current state of research in this emerging field. This review provides a comprehensive overview of recent developments in the fabrication and surface characterisation of porous carbons from different food wastes. A special focus is given on the applications of these food waste derived porous carbons for energy storage applications including batteries and supercapacitors.


This review compiles very recent literature on the synthesis of porous carbon from food waste biomass and their efficient utilisation as electrode material for energy storage applications in supercapacitor devices.

2.
J Nanosci Nanotechnol ; 21(3): 1483-1492, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33404411

RESUMEN

We report on the synthesis of 3D mesoporous fullerene/carbon hybrid materials with ordered porous structure and high surface area by mixing the solution of fullerene and sucrose molecules in the nanochannels of 3D mesoporous silica, KIT-6 via nanotemplating approach. The addition of sucrose molecules in the synthesis offers a thin layer of carbon between the fullerene molecules which enhances not only the specific surface area and the specific pore volume but also the conductivity of the hybrid materials. The prepared hybrids exhibit 3D mesoporous structure and show a much higher specific surface area than that of the pure mesoporous fullerene. The hybrids materials are used as the electrodes for supercapacitor and Li-ion battery applications. The optimised hybrid sample shows an excellent rate capability and a high specific capacitance of 254 F/g at the current density of 0.5 A/g, which is much higher than that of the pure mesoporous fullerene, mesoporous carbon, activated carbon and multiwalled carbon nanotubes. When used as the electrode for Li-ion battery, the sample delivers the largest specific capacity of 1067 mAh/g upon 50 cycles at the current density of 0.1 A/g with stability. These results reveal that the addition of carbon in the mesoporous fullerene with 3D structure makes a significant impact on the electrochemical properties of the hybrid samples, demonstrating their potential for applications in Li-ion battery and supercapacitor devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA