Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38895471

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a rare, fatal neurodegenerative disorder caused by pathological variants in NPC1 , which encodes a lysosomal cholesterol transport protein. There are no FDA approved treatments for this disorder. Both systemic and central nervous system delivery of AAV9- hNPC1 have shown significant disease amelioration in NPC1 murine models. To assess the impact of dose and window of therapeutic efficacy in Npc1 m1N mice, we systemically administered three different doses of AAV9- hNPC1 at 4 weeks old and the medium dose at pre-, early, and post-symptomatic timepoints. Higher vector doses and treatment earlier in life were associated with enhanced transduction in the nervous system and resulted in significantly increased lifespan. Similar beneficial effects were noted after gene therapy in Npc1 I1061T mice, a model that recapitulates a common human hypomorphic variant. Our findings help define dose ranges, treatment ages, and efficacy in severe and hypomorphic models of NPC1 deficiency and suggest that earlier delivery of AAV9- hNPC1 in a pre-symptomatic disease state is likely to yield optimal outcomes in individuals with NPC1. Summary Blurb: Systemic AAV9- hNPC1 gene therapy in null Npc1 m1N mice at higher doses or with earlier administration and treatment of hypomorphic Npc1 I1061T mice delays disease progression and increases lifespan.

2.
Biol Open ; 11(4)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35452076

RESUMEN

Identifying meaningful predictors of therapeutic efficacy from preclinical studies is challenging. However, clinical manifestations occurring in both patients and mammalian models offer significant translational value. Many neurological disorders, including inherited, metabolic Niemann-Pick disease, type C (NPC), exhibit ataxia. Both individuals with NPC and murine models manifest ataxia, and investigational therapies impacting this phenotype in mice have been reported to slow disease progression in patients (e.g. miglustat, intrathecal 2-hydroxypropyl-beta-cyclodextrin, and acetyl-L-leucine). Reproducible phenotypic scoring of animal models can facilitate comparisons between genotypes, sexes, disease course, and therapies. Previously, other groups have developed a composite phenotypic scoring system (CPSS), which was subsequently used to distinguish strain-dependent phenotypes and, with modifications, to evaluate potential therapies. However, high inter-rater reliability is paramount to widespread use. We have created a comprehensive, easy-to-follow phenotypic assessment based on the CPSS and have verified its reproducibility using murine models of NPC disease. Application of this scoring system is not limited to NPC disease and may be applicable to other models of neurodegeneration exhibiting motor incoordination, thereby increasing its utility in translational studies.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , Animales , Ataxia/diagnóstico , Ataxia/etiología , Modelos Animales de Enfermedad , Humanos , Mamíferos , Ratones , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Fenotipo , Reproducibilidad de los Resultados
3.
Life Sci Alliance ; 4(10)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34407999

RESUMEN

Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.


Asunto(s)
Dependovirus/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Transducción Genética , Animales , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Proteína Niemann-Pick C1/genética , Fenotipo , Distribución Tisular , Transgenes , Resultado del Tratamiento
4.
Hum Mol Genet ; 30(24): 2456-2468, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34296265

RESUMEN

The rare, fatal neurodegenerative disorder Niemann-Pick disease type C1 (NPC1) arises from lysosomal accumulation of unesterified cholesterol and glycosphingolipids. These subcellular pathologies lead to phenotypes of hepatosplenomegaly, neurological degeneration and premature death. The timing and severity of NPC1 clinical presentation is extremely heterogeneous. This study analyzed RNA-Seq data from 42 NPC1 patient-derived, primary fibroblast cell lines to determine transcriptional changes induced by treatment with 2-hydroxypropyl-ß-cyclodextrin (HPßCD), a compound currently under investigation in clinical trials. A total of 485 HPßCD-responsive genes were identified. Pathway enrichment analysis of these genes showed significant involvement in cholesterol and lipid biosynthesis. Furthermore, immunohistochemistry of the cerebellum as well as measurements of plasma from Npc1m1N null mice treated with HPßCD and adeno-associated virus gene therapy suggests that one of the identified genes, GPNMB, may serve as a useful biomarker of treatment response in NPC1 disease. Overall, this large NPC1 patient-derived dataset provides a comprehensive foundation for understanding the genomic response to HPßCD treatment.


Asunto(s)
Enfermedad de Niemann-Pick Tipo C , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Biomarcadores , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/patología , Transcriptoma
5.
Mol Genet Metab ; 129(2): 165-170, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31668555

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a rare neurodegenerative lysosomal storage disease with a wide spectrum of clinical manifestation. Multiple genetic factors influence the NPC1 mouse phenotype, but very little attention has been given to prenatal environmental factors that might have long-term effects on the neuroinflammatory component of NPC1 pathology. Studies in other mouse models of cerebellar ataxia have shown that developmental exposures lead to Purkinje neuron degeneration later in life, suggesting that environmental exposures during development can impact cerebellar biology. Thus, we evaluated the potential effect of maternal immune activation (MIA) on disease progression in an Npc1 mouse model. The MIA paradigm used mimics viral infection using the toll like receptor 3 agonist polyinosinic-polycytidilic acid during gestation. Through phenotypic and pathologic tests, we measured motor and behavioral changes as well as cerebellar neuroinflammation and neurodegeneration. We observed a gender and genotype dependent effect of MIA on the cerebellum. While the effects of MIA have been previously shown to primarily affect male progeny, we observed increased sensitivity of female mutant progeny to prenatal exposure to treatment with polyinosinic-polycytidilic acid. Specifically, prenatal MIA resulted in female NPC1 mutant progeny with greater motor deficits and a corresponding decrease in cerebellar Purkinje neurons. Our data suggest that prenatal environmental exposures may be one factor contributing to the phenotypic variability observed in individuals with NPC1.


Asunto(s)
Intercambio Materno-Fetal/inmunología , Neuronas/patología , Enfermedad de Niemann-Pick Tipo C/genética , Enfermedad de Niemann-Pick Tipo C/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Intercambio Materno-Fetal/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Neuronas/inmunología , Poli I-C/administración & dosificación , Embarazo , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Factores Sexuales
6.
Bioanalysis ; 11(11): 1067-1083, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31251104

RESUMEN

Aim: Mass spectrometry (MS)-based proteomics, particularly with the development of nano-ESI, have been invaluable to our understanding of altered proteins related to human disease. Niemann-Pick, type C1 (NPC1) disease is a fatal, autosomal recessive, neurodegenerative disorder. The resulting defects include unesterified cholesterol and sphingolipids accumulation in the late endosomal/lysosomal system resulting in organ dysfunction including liver disease. Materials & methods: First, we performed MS analysis of a complex mammalian proteome using both nano- and standard-flow ESI with the intent of developing a differential proteomics platform using standard-flow ESI. Next, we measured the differential liver proteome in the NPC1 mouse model via label-free quantitative MS using standard-flow ESI. Results: Using the standard-flow ESI approach, we found altered protein levels including, increased Limp2 and Rab7a in liver tissue of Npc1-/- compared to control mice. Conclusion: Standard-flow ESI can be a tool for quantitative proteomic studies when sample amount is not limited. Using this method, we have identified new protein markers of NPC1.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/análisis , Hepatopatías/diagnóstico , Hígado/química , Enfermedad de Niemann-Pick Tipo C/diagnóstico , Temperatura , Animales , Cromatografía Liquida , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/metabolismo , Hepatopatías/metabolismo , Ratones , Ratones Noqueados , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/metabolismo , Proteómica , Espectrometría de Masa por Ionización de Electrospray
7.
Proteomics ; 19(9): e1800432, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30888112

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow-ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late-stage pathophysiology of NPC1.


Asunto(s)
Antígenos CD36/genética , Factores de Intercambio de Guanina Nucleótido/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Membrana de los Lisosomas/genética , Neuropéptidos/genética , Enfermedad de Niemann-Pick Tipo C/genética , Animales , Colesterol/genética , Cromatografía Liquida , Modelos Animales de Enfermedad , Humanos , Hígado/metabolismo , Lisosomas/genética , Ratones , Mutación , Proteína Niemann-Pick C1 , Proteómica/métodos , Transducción de Señal/genética , Espectrometría de Masa por Ionización de Electrospray
8.
Lancet ; 390(10104): 1758-1768, 2017 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-28803710

RESUMEN

BACKGROUND: Niemann-Pick disease, type C1 (NPC1) is a lysosomal storage disorder characterised by progressive neurodegeneration. In preclinical testing, 2-hydroxypropyl-ß-cyclodextrins (HPßCD) significantly delayed cerebellar Purkinje cell loss, slowed progression of neurological manifestations, and increased lifespan in mouse and cat models of NPC1. The aim of this study was to assess the safety and efficacy of lumbar intrathecal HPßCD. METHODS: In this open-label, dose-escalation phase 1-2a study, we gave monthly intrathecal HPßCD to participants with NPC1 with neurological manifestation at the National Institutes of Health (NIH), Bethesda, MD, USA. To explore the potential effect of 2-week dosing, three additional participants were enrolled in a parallel study at Rush University Medical Center (RUMC), Chicago, IL, USA. Participants from the NIH were non-randomly, sequentially assigned in cohorts of three to receive monthly initial intrathecal HPßCD at doses of 50, 200, 300, or 400 mg per month. A fifth cohort of two participants received initial doses of 900 mg. Participants from RUMC initially received 200 or 400 mg every 2 weeks. The dose was escalated based on tolerance or safety data from higher dose cohorts. Serum and CSF 24(S)-hydroxycholesterol (24[S]-HC), which serves as a biomarker of target engagement, and CSF protein biomarkers were evaluated. NPC Neurological Severity Scores (NNSS) were used to compare disease progression in HPßCD-treated participants relative to a historical comparison cohort of 21 NPC1 participants of similar age range. FINDINGS: Between Sept 21, 2013, and Jan 19, 2015, 32 participants with NPC1 were assessed for eligibility at the National Institutes of Health. 18 patients were excluded due to inclusion criteria not met (six patients), declined to participate (three patients), pursued independent expanded access and obtained the drug outside of the study (three patients), enrolled in the RUMC cohort (one patient), or too late for the trial enrolment (five patients). 14 patients were enrolled and sequentially assigned to receive intrathecal HPßCD at a starting dose of 50 mg per month (three patients), 200 mg per month (three patients), 300 mg per month (three patients), 400 mg per month (three patients), or 900 mg per month (two patients). During the first year, two patients had treatment interrupted for one dose, based on grade 1 ototoxicity. All 14 patients were assessed at 12 months. Between 12 and 18 months, one participant had treatment interrupted at 17 months due to hepatocellular carcinoma, one patient had dose interruption for 2 doses based on caregiver hardship and one patient had treatment interrupted for 1 dose for mastoiditis. 11 patients were assessed at 18 months. Between Dec 11, 2013, and June 25, 2014, three participants were assessed for eligibility and enrolled at RUMC, and were assigned to receive intrathecal HPßCD at a starting dose of 200 mg every 2 weeks (two patients), or 400 mg every two weeks (one patient). There were no dropouts in this group and all 3 patients were assessed at 18 months. Biomarker studies were consistent with improved neuronal cholesterol homoeostasis and decreased neuronal pathology. Post-drug plasma 24(S)-HC area under the curve (AUC8-72) values, an indicator of neuronal cholesterol homoeostasis, were significantly higher than post-saline plasma 24(S)-HC AUC8-72 after doses of 900 mg (p=0·0063) and 1200 mg (p=0·0037). CSF 24(S)-HC concentrations in three participants given either 600 or 900 mg of HPßCD were increased about two fold (p=0·0032) after drug administration. No drug-related serious adverse events were observed. Mid-frequency to high-frequency hearing loss, an expected adverse event, was documented in all participants. When managed with hearing aids, this did not have an appreciable effect on daily communication. The NNSS for the 14 participants treated monthly increased at a rate of 1·22, SEM 0·34 points per year compared with 2·92, SEM 0·27 points per year (p=0·0002) for the 21 patient comparison group. Decreased progression was observed for NNSS domains of ambulation (p=0·0622), cognition (p=0·0040) and speech (p=0·0423). INTERPRETATION: Patients with NPC1 treated with intrathecal HPßCD had slowed disease progression with an acceptable safety profile. These data support the initiation of a multinational, randomised, controlled trial of intrathecal HPßCD. FUNDING: National Institutes of Health, Dana's Angels Research Trust, Ara Parseghian Medical Research Foundation, Hope for Haley, Samantha's Search for the Cure Foundation, National Niemann-Pick Disease Foundation, Support of Accelerated Research for NPC Disease, Vtesse, Janssen Research and Development, a Johnson & Johnson company, and Johnson & Johnson.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Progresión de la Enfermedad , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , 2-Hidroxipropil-beta-Ciclodextrina/efectos adversos , Adolescente , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Calbindinas/líquido cefalorraquídeo , Niño , Preescolar , Relación Dosis-Respuesta a Droga , Proteína 3 de Unión a Ácidos Grasos/líquido cefalorraquídeo , Femenino , Pérdida Auditiva de Alta Frecuencia/inducido químicamente , Humanos , Hidroxicolesteroles/sangre , Hidroxicolesteroles/líquido cefalorraquídeo , Inyecciones Espinales , Masculino , Enfermedad de Niemann-Pick Tipo C/sangre , Enfermedad de Niemann-Pick Tipo C/líquido cefalorraquídeo , Enfermedades Raras/tratamiento farmacológico , Adulto Joven
9.
Hum Mol Genet ; 26(5): 843-859, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28062666

RESUMEN

2-hydroxypropyl-ß-cyclodextrin (CYCLO), a modifier of cholesterol efflux from cellular membrane and endo-lysosomal compartments, reduces lysosomal lipid accumulations and has therapeutic effects in animal models of Niemann-Pick disease type C and several other neurodegenerative states. Here, we investigated CYCLO effects on autophagy in wild-type mice and TgCRND8 mice-an Alzheimer's Disease (AD) model exhibiting ß-amyloidosis, neuronal autophagy deficits leading to protein and lipid accumulation within greatly enlarged autolysosomes. A 14-day intracerebroventricular administration of CYCLO to 8-month-old TgCRND8 mice that exhibit moderately advanced neuropathology markedly diminished the sizes of enlarged autolysosomes and lowered their content of GM2 ganglioside and Aß-immunoreactivity without detectably altering amyloid precursor protein processing or extracellular Aß/ß-amyloid burden. We identified two major actions of CYCLO on autophagy underlying amelioration of lysosomal pathology. First, CYCLO stimulated lysosomal proteolytic activity by increasing cathepsin D activity, levels of cathepsins B and D and two proteins known to interact with cathepsin D, NPC1 and ABCA1. Second, CYCLO impeded autophagosome-lysosome fusion as evidenced by the accumulation of LC3, SQSTM1/p62, and ubiquitinated substrates in an expanded population of autophagosomes in the absence of greater autophagy induction. By slowing substrate delivery to lysosomes, autophagosome maturational delay, as further confirmed by our in vitro studies, may relieve lysosomal stress due to accumulated substrates. These findings provide in vivo evidence for lysosomal enhancing properties of CYCLO, but caution that prolonged interference with cellular membrane fusion/autophagosome maturation could have unfavorable consequences, which might require careful optimization of dosage and dosing schedules.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Amiloidosis/tratamiento farmacológico , Ciclodextrinas/administración & dosificación , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Amiloidosis/metabolismo , Animales , Autofagia/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología
10.
Hum Mol Genet ; 26(1): 52-64, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798114

RESUMEN

Niemann-Pick disease, type C1 (NPC1) is a heritable lysosomal storage disease characterized by a progressive neurological degeneration that causes disability and premature death. A murine model of NPC1 disease (Npc1-/-) displays a rapidly progressing form of NPC1 disease which is characterized by weight loss, ataxia, increased cholesterol storage, loss of cerebellar Purkinje neurons and early lethality. To test the potential efficacy of gene therapy for NPC1, we constructed adeno-associated virus serotype 9 (AAV9) vectors to deliver the NPC1 gene under the transcriptional control of the neuronal-specific (CamKII) or a ubiquitous (EF1a) promoter. The Npc1-/- mice that received a single dose of AAV9-CamKII-NPC1 as neonates (2.6 × 1011GC) or at weaning (1.3 × 1012GC), and the mice that received a single dose of AAV9-EF1a-NPC1 at weaning (1.2 × 1012GC), exhibited an increased life span, characterized by delayed weight loss and diminished motor decline. Cholesterol storage and Purkinje neuron loss were also reduced in the central nervous system of AAV9 treated Npc1-/- mice. Treatment with AAV9-EF1a-NPC1, as compared to AAV9-CamKII-NPC1, resulted in significantly increased survival (mean survival increased from 69 days to 166 and 97 days, respectively) and growth, and reduced hepatic-cholesterol accumulation. Our results provide the first demonstration that gene therapy may represent a therapeutic option for NPC1 patients and suggest that extraneuronal NPC1 expression can further augment the lifespan of the Npc1-/- mice after systemic AAV gene delivery.


Asunto(s)
Dependovirus/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Longevidad/genética , Enfermedad de Niemann-Pick Tipo C/terapia , Proteínas/genética , Animales , Cerebelo/metabolismo , Cerebelo/patología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Femenino , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/genética , Células de Purkinje/metabolismo , Células de Purkinje/patología
11.
Orphanet J Rare Dis ; 11(1): 161, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27903269

RESUMEN

Rare disease represents one of the most significant issues facing the medical community and health care providers worldwide, yet the majority of these disorders never emerge from their obscurity, drawing little attention from the medical community or the pharmaceutical industry. The challenge therefore is how best to mobilize rare disease stakeholders to enhance basic, translational and clinical research to advance understanding of pathogenesis and accelerate therapy development. Here we describe a rare, fatal brain disorder known as Niemann-Pick type C (NPC) and an innovative research collaborative known as Support of Accelerated Research for NPC (SOAR-NPC) which illustrates one pathway through which knowledge of a rare disease and its possible treatments are being successfully advanced. Use of the "SOAR" mechanism, we believe, offers a blueprint for similar advancement for many other rare disorders.


Asunto(s)
Conducta Cooperativa , Enfermedad de Niemann-Pick Tipo C , Enfermedades Raras , Ciclodextrinas , Humanos , Investigación Biomédica Traslacional/métodos
12.
Ann Clin Transl Neurol ; 3(5): 366-80, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27231706

RESUMEN

OBJECTIVE: Niemann-Pick type C (NPC) disease is a fatal, neurodegenerative, lysosomal storage disorder characterized by intracellular accumulation of unesterified cholesterol (UC) and other lipids. While its mechanism of action remains unresolved, administration of 2-hydroxypropyl-ß-cyclodextrin (HPßCD) has provided the greatest disease amelioration in animal models but is ototoxic. We evaluated other cyclodextrins (CDs) for treatment outcome and chemical interaction with disease-relevant substrates that could pertain to mechanism. METHODS: NPC disease mice treated for 2 weeks with nine different CDs were evaluated for UC, and GM2 and GM3 ganglioside accumulation using immunohisto/cytochemical and biochemical assays. Auditory brainstem responses were determined in wild-type mice administered CDs. CD complexation with UC, gangliosides, and other lipids was quantified. RESULTS: Four HPßCDs varying in degrees of substitution, including one currently in clinical trial, showed equivalent storage reduction, while other CDs showed significant differences in relative ototoxicity and efficacy, with reductions similar for the brain and liver. Importantly, HPγCD and two sulfobutylether-CDs showed efficacy with reduced ototoxicity. Complexation studies showed: incomplete correlation between CD efficacy and UC solubilization; an inverse correlation for ganglioside complexation; substantial interaction with several relevant lipids; and association between undesirable increases of UC storage in Kupffer cells and UC solubilization. INTERPRETATION: CDs other than HPßCD identified here may provide disease amelioration without ototoxicity and merit long-term treatment studies. While direct interactions of CD-UC are thought central to the mechanism of correction, the data show that this does not strictly correlate with complexation ability and suggest interactions with other NPC disease-relevant substrates should be considered.

13.
J Inherit Metab Dis ; 36(3): 491-8, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23412751

RESUMEN

Niemann-Pick type C disease is an inherited autosomal recessive neurodegenerative disorder characterised by the accumulation of unesterified cholesterol and sphingolipids within the endosomal/lysosomal compartments. It has been observed that the administration of hydroxypropyl-ß-cyclodextrin (HPBCD) delays onset of clinical symptoms and reduces accumulation of cholesterol and gangliosides within neuronal cells. It was assumed that HPBCD exerts its action by readily entering the CNS and directly interacting with neurones and other brain cells to facilitate removal of stored cholesterol from the late endosomal/lysosomal compartment. Here, we present evidence that refutes this hypothesis. We use two well established techniques for accurately measuring brain uptake of solutes from blood and show that there is no significant crossing of HPBCD into the brain. The two techniques are brain in situ perfusion and intraperitoneal injection followed by multi-time-point regression analysis. Neither study demonstrates significant, time-dependent uptake of HPBCD in either adult or neonatal mice. However, the volume of distribution available to HPBCD (0.113 ± 0.010 ml/g) exceeds the accepted values for plasma and vascular volume of the brain. In fact, it is nearly three times larger than that for sucrose (0.039 ± 0.006 ml/g). We propose that this indicates cell surface binding of HPBCD to the endothelium of the cerebral vasculature and may provide a mechanism for the mobilisation and clearance of cholesterol from the CNS.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Colesterol/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedades de Niemann-Pick/tratamiento farmacológico , beta-Ciclodextrinas/uso terapéutico , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Barrera Hematoencefálica/efectos de los fármacos , Permeabilidad Capilar/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Inyecciones Intraperitoneales , Péptidos y Proteínas de Señalización Intracelular , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Neuronas/patología , Proteína Niemann-Pick C1 , Enfermedades de Niemann-Pick/genética , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Perfusión , Proteínas/genética , Proteínas/metabolismo , beta-Ciclodextrinas/administración & dosificación
14.
Hum Mol Genet ; 21(16): 3632-46, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22619379

RESUMEN

Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-ß-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.


Asunto(s)
Biomarcadores/sangre , Catepsina D/sangre , Galectina 3/sangre , Hígado/fisiología , Enfermedad de Niemann-Pick Tipo C/sangre , Enfermedad de Niemann-Pick Tipo C/genética , 2-Hidroxipropil-beta-Ciclodextrina , Adolescente , Factores de Edad , Animales , Estudios de Casos y Controles , Catepsina D/genética , Niño , Preescolar , Sistema Enzimático del Citocromo P-450/genética , Modelos Animales de Enfermedad , Femenino , Galectina 3/genética , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Ratones , Ratones Mutantes , Análisis por Micromatrices , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , Enfermedad de Niemann-Pick Tipo C/mortalidad , Proteínas/genética , Proteínas/metabolismo , Tasa de Supervivencia , Transcriptoma , beta-Ciclodextrinas/farmacología
15.
PLoS One ; 4(9): e6951, 2009 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-19750228

RESUMEN

BACKGROUND: Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder caused most commonly by a defect in the NPC1 protein and characterized by widespread intracellular accumulation of unesterified cholesterol and glycosphingolipids (GSLs). While current treatment therapies are limited, a few drugs tested in Npc1(-/-) mice have shown partial benefit. During a combination treatment trial using two such compounds, N-butyldeoxynojirimycin (NB-DNJ) and allopregnanolone, we noted increased lifespan for Npc1(-/-) mice receiving only 2-hydroxypropyl-beta-cyclodextrin (CD), the vehicle for allopregnanolone. This finding suggested that administration of CD alone, but with greater frequency, might provide additional benefit. METHODOLOGY/PRINCIPAL FINDINGS: Administration of CD to Npc1(-/-) mice beginning at either P7 or P21 and continuing every other day delayed clinical onset, reduced intraneuronal cholesterol and GSL storage as well as free sphingosine accumulation, reduced markers of neurodegeneration, and led to longer survival than any previous treatment regime. We reasoned that other lysosomal diseases characterized by cholesterol and GSL accumulation, including NPC disease due to NPC2 deficiency, GM1 gangliosidosis and mucopolysaccharidosis (MPS) type IIIA, might likewise benefit from CD treatment. Treated Npc2(-/-) mice showed benefits similar to NPC1 disease, however, mice with GM1 gangliosidosis or MPS IIIA failed to show reduction in storage. CONCLUSIONS/SIGNIFICANCE: Treatment with CD delayed clinical disease onset, reduced intraneuronal storage and secondary markers of neurodegeneration, and significantly increased lifespan of both Npc1(-/-) and Npc2(-/-) mice. In contrast, CD failed to ameliorate cholesterol or glycosphingolipid storage in GM1 gangliosidosis and MPS IIIA disease. Understanding the mechanism(s) by which CD leads to reduced neuronal storage may provide important new opportunities for treatment of NPC and related neurodegenerative diseases characterized by cholesterol dyshomeostasis.


Asunto(s)
Colesterol/metabolismo , Ciclodextrinas/administración & dosificación , Glicoesfingolípidos/metabolismo , Neuronas/metabolismo , Enfermedad de Niemann-Pick Tipo C/tratamiento farmacológico , 1-Desoxinojirimicina/administración & dosificación , 1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Sinergismo Farmacológico , Inhibidores Enzimáticos/uso terapéutico , Ratones , Ratones Transgénicos , Pregnanolona/administración & dosificación , Resultado del Tratamiento , beta-Ciclodextrinas/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA