Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Pain ; 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39324934

RESUMEN

ABSTRACT: Persistent or chronic pain is the primary reason people seek medical care, yet current therapies are either limited in efficacy or cause intolerable side effects. Diverse mechanisms contribute to the basic phenomena of nociceptor hyperexcitability that initiates and maintains pain. Two prominent players in the modulation of nociceptor hyperexcitability are the transient receptor potential vanilloid type 1 (TRPV1) ligand-gated ion channel and the voltage-gated potassium channel, Kv7.2/3, that reciprocally regulate neuronal excitability. Across many drug development programs targeting either TRPV1 or Kv7.2/3, significant evidence has been accumulated to support these as highly relevant targets; however, side effects that are poorly separated from efficacy have limited the successful clinical translation of numerous Kv7.2/3 and TRPV1 drug development programs. We report here the pharmacological profile of 3 structurally related small molecule analogues that demonstrate a novel mechanism of action (MOA) of dual modulation of Kv7.2/3 and TRPV1. Specifically, these compounds simultaneously activate Kv7.2/3 and enable unexpected specific and potent inhibition of TRPV1. This in vitro potency translated to significant analgesia in vivo in several animal models of acute and chronic pain. Importantly, this specific MOA is not associated with any previously described Kv7.2/3 or TRPV1 class-specific side effects. We suggest that the therapeutic potential of this MOA is derived from the selective and specific targeting of a subpopulation of nociceptors found in rodents and humans. This efficacy and safety profile supports the advancement of dual TRPV1-Kv7.2/3 modulating compounds into preclinical and clinical development for the treatment of chronic pain.

2.
J Pain ; 25(3): 766-780, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37832899

RESUMEN

The posterior insular cortex (PIC) is well positioned to perform somatosensory-limbic integration; yet, the function of neuronal subsets within the PIC in processing the sensory and affective dimensions of pain remains unclear. Here, we employ bidirectional chemogenetic modulation to characterize the function of PIC CaMKIIa-expressing excitatory neurons in a comprehensive array of sensory, affective, and thermoregulatory behaviors. Excitatory pyramidal neurons in the PIC were found to be sensitized under inflammatory pain conditions. Chemogenetic activation of excitatory CaMKIIa-expressing PIC neurons in non-injured conditions produced an increase in reflexive and affective pain- and anxiety-like behaviors. Moreover, activation of PIC CaMKIIa-expressing neurons during inflammatory pain conditions exacerbated hyperalgesia and decreased pain tolerance. However, Chemogenetic activation did not alter heat nociception via hot plate latency or body temperature. Conversely, inhibiting CaMKIIa-expressing neurons did not alter either sensory or affective pain-like behaviors in non-injured or under inflammatory pain conditions, but it did decrease body temperature and decreased hot plate latency. Our findings reveal that PIC CaMKIIa-expressing neurons are a critical hub for producing both sensory and affective pain-like behaviors and important for thermoregulatory processing. PERSPECTIVE: The present study reveals that activation of the posterior insula produces hyperalgesia and negative affect, and has a role in thermal tolerance and thermoregulation. These findings highlight the insula as a key player in contributing to the multidimensionality of pain.


Asunto(s)
Hiperalgesia , Corteza Insular , Humanos , Dolor/psicología , Neuronas/fisiología , Regulación de la Temperatura Corporal
3.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38106002

RESUMEN

Nerve growth factor (NGF) monoclonal antibodies (mAb) are one of the few patient-validated non-opioid treatments for chronic pain, despite failing to gain FDA approval due to worsened joint damage in some osteoarthritis patients. Herein, we demonstrate that neuropilin-1 (NRP1) is a nociceptor-enriched co-receptor for NGF that is necessary for tropomyosin-related kinase A (TrkA) signaling of pain. NGF binds NRP1 with nanomolar affinity. NRP1 and G Alpha Interacting Protein C-terminus 1 (GIPC1), a NRP1/TrkA adaptor, are coexpressed with TrkA in human and mouse nociceptors. NRP1 small molecule inhibitors and blocking mAb prevent NGF-stimulated action potential firing and activation of Na+ and Ca2+ channels in human and mouse nociceptors and abrogate NGF-evoked and inflammatory nociception in mice. NRP1 knockdown blunts NGF-stimulated TrkA phosphorylation, kinase signaling and transcription, whereas NRP1 overexpression enhances NGF and TrkA signaling. As well as interacting with NGF, NRP1 forms a heteromeric complex with TrkA. NRP1 thereby chaperones TrkA from the biosynthetic pathway to the plasma membrane and then to signaling endosomes, which enhances NGF-induced TrkA dimerization, endocytosis and signaling. Knockdown of GIPC1, a PDZ-binding protein that scaffolds NRP1 and TrkA to myosin VI, abrogates NGF-evoked excitation of nociceptors and pain-like behavior in mice. We identify NRP1 as a previously unrecognized co-receptor necessary for NGF/TrkA pain signaling by direct NGF binding and by chaperoning TrkA to the plasma membrane and signaling endosomes via the adaptor protein GIPC1. Antagonism of NRP1 and GIPC1 in nociceptors offers a long-awaited alternative to systemic sequestration of NGF with mAbs for the treatment of pain.

4.
Bio Protoc ; 13(24): e4906, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38156033

RESUMEN

Satellite glial cells (SGCs) are a type of glial cell population that originates from neural crest cells. They ultimately migrate to surround the cell bodies of neurons in the ganglia of the peripheral nervous system. Under physiological conditions, SGCs perform homeostatic functions by modifying the microenvironment around nearby neurons and provide nutrients, structure, and protection. In recent years, they have gained considerable attention due to their involvement in peripheral nerve regeneration and pain. Although methods for culturing neonatal or rat SGCs have long existed, a well-characterized method for dissociating and culturing adult SGCs from mouse tissues has been lacking until recently. This has impeded further studies of their function and the testing of new therapeutics. This protocol provides a detailed description of how to obtain primary cultures of adult SGCs from mouse dorsal root ganglia in approximately two weeks with over 90% cell purity. We also demonstrate cell purity of these cultures using quantitative real-time RT-PCR and their functional integrity using calcium imaging. Key features • Detailed and simplified protocol to dissociate and culture primary satellite glial cells (SGCs) from adult mice. • Cells are dissociated in approximately 2-3 h and cultured for approximately two weeks. • These SGC cultures allow both molecular and functional studies.

5.
Nature ; 613(7943): 345-354, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599983

RESUMEN

Understanding how a subset of expressed genes dictates cellular phenotype is a considerable challenge owing to the large numbers of molecules involved, their combinatorics and the plethora of cellular behaviours that they determine1,2. Here we reduced this complexity by focusing on cellular organization-a key readout and driver of cell behaviour3,4-at the level of major cellular structures that represent distinct organelles and functional machines, and generated the WTC-11 hiPSC Single-Cell Image Dataset v1, which contains more than 200,000 live cells in 3D, spanning 25 key cellular structures. The scale and quality of this dataset permitted the creation of a generalizable analysis framework to convert raw image data of cells and their structures into dimensionally reduced, quantitative measurements that can be interpreted by humans, and to facilitate data exploration. This framework embraces the vast cell-to-cell variability that is observed within a normal population, facilitates the integration of cell-by-cell structural data and allows quantitative analyses of distinct, separable aspects of organization within and across different cell populations. We found that the integrated intracellular organization of interphase cells was robust to the wide range of variation in cell shape in the population; that the average locations of some structures became polarized in cells at the edges of colonies while maintaining the 'wiring' of their interactions with other structures; and that, by contrast, changes in the location of structures during early mitotic reorganization were accompanied by changes in their wiring.


Asunto(s)
Células Madre Pluripotentes Inducidas , Espacio Intracelular , Humanos , Células Madre Pluripotentes Inducidas/citología , Análisis de la Célula Individual , Conjuntos de Datos como Asunto , Interfase , Forma de la Célula , Mitosis , Polaridad Celular , Supervivencia Celular
6.
J Neurosci ; 43(7): 1267-1278, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36627209

RESUMEN

Dysregulation of pain-associated genes in the dorsal root ganglion (DRG) is considered to be a molecular basis of neuropathic pain genesis. Fused in sarcoma (FUS), a DNA/RNA-binding protein, is a critical regulator of gene expression. However, whether it contributes to neuropathic pain is unknown. This study showed that peripheral nerve injury caused by the fourth lumbar (L4) spinal nerve ligation (SNL) or chronic constriction injury (CCI) of the sciatic nerve produced a marked increase in the expression of FUS protein in injured DRG neurons. Blocking this increase through microinjection of the adeno-associated virus (AAV) 5-expressing Fus shRNA into the ipsilateral L4 DRG mitigated the SNL-induced nociceptive hypersensitivities in both male and female mice. This microinjection also alleviated the SNL-induced increases in the levels of phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) and glial fibrillary acidic protein (GFAP) in the ipsilateral L4 dorsal horn. Furthermore, mimicking this increase through microinjection of AAV5 expressing full-length Fus mRNA into unilateral L3/4 DRGs produced the elevations in the levels of p-ERK1/2 and GFAP in the dorsal horn, enhanced responses to mechanical, heat and cold stimuli, and induced the spontaneous pain on the ipsilateral side of both male and female mice in the absence of SNL. Mechanistically, the increased FUS activated the NF-κB signaling pathway by promoting the translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Our results indicate that DRG FUS contributes to neuropathic pain likely through the activation of NF-κB in primary sensory neurons.SIGNIFICANCE STATEMENT In the present study, we reported that fused in sarcoma (FUS), a DNA/RNA-binding protein, is upregulated in injured dorsal root ganglion (DRG) following peripheral nerve injury. This upregulation is responsible for nerve injury-induced translocation of p65 into the nucleus and phosphorylation of p65 in the nucleus from injured DRG neurons. Because blocking this upregulation alleviates nerve injury-induced nociceptive hypersensitivity, DRG FUS participates in neuropathic pain likely through the activation of NF-κB in primary sensory neurons. FUS may be a potential target for neuropathic pain management.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Sarcoma , Femenino , Ratas , Ratones , Masculino , Animales , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Traumatismos de los Nervios Periféricos/complicaciones , Traumatismos de los Nervios Periféricos/metabolismo , Hiperalgesia/metabolismo , Nocicepción , Neuralgia/metabolismo , Células Receptoras Sensoriales/metabolismo , Sarcoma/complicaciones , Sarcoma/metabolismo , ADN/metabolismo , Ganglios Espinales/metabolismo
7.
Br J Anaesth ; 130(2): 202-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460518

RESUMEN

BACKGROUND: Blocking increased expression of nerve injury-specific long non-coding RNA (NIS-lncRNA) in injured dorsal root ganglia (DRG) through DRG microinjection of NIS-lncRNA small hairpin interfering RNA or generation of NIS-lncRNA knockdown mice mitigates neuropathic pain. However, these strategies are impractical in the clinic. This study employed a Food and Drug Administration (FDA)-approved antisense oligonucleotides strategy to examine the effect of NIS-lncRNA ASOs on neuropathic pain. METHODS: Effects of intrathecal injection of NIS-lncRNA antisense oligonucleotides on day 7 or 14 after chronic constriction injury (CCI) of the sciatic nerve, fourth lumbar (L4) spinal nerve ligation, or intraperitoneal injection of paclitaxel or streptozotocin on the expression of DRG NIS-lncRNA and C-C chemokine ligand 2 (CCL2, an NIS-lncRNA downstream target) and nociceptive hypersensitivity were examined. We also assessed whether NIS-lncRNA antisense oligonucleotides produced cellular toxicity. RESULTS: Intrathecal NIS-lncRNA antisense oligonucleotides attenuated CCI-induced mechanical allodynia, heat hyperalgesia, cold hyperalgesia, and ongoing nociceptive responses, without changing basal or acute nociceptive responses and locomotor function. Intrathecal NIS-lncRNA antisense oligonucleotides also blocked CCI-induced increases in NIS-lncRNA and CCL2 in the ipsilateral L3 and L4 DRG and hyperactivities of neurones and astrocytes in the ipsilateral L3 and L4 spinal cord dorsal horn. Similar results were found in antisense oligonucleotides-treated mice after spinal nerve ligation or intraperitoneal injection of paclitaxel or streptozotocin. Normal morphologic structure and no cell loss were observed in the DRG and spinal cord of antisense oligonucleotides-treated mice. CONCLUSION: These findings further validate the role of NIS-lncRNA in trauma-, chemotherapy-, or diabetes-induced neuropathic pain and demonstrate potential clinical application of NIS-lncRNA antisense oligonucleotides for neuropathic pain management.


Asunto(s)
Diabetes Mellitus , Neuralgia , ARN Largo no Codificante , Ratas , Ratones , Animales , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Oligonucleótidos Antisentido/metabolismo , Estreptozocina/metabolismo , Ratas Sprague-Dawley , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Asta Dorsal de la Médula Espinal/metabolismo , ARN Interferente Pequeño
8.
Pain ; 164(6): 1355-1374, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36378744

RESUMEN

ABSTRACT: Chronic pain involves sensitization of nociceptors and synaptic transmission of painful signals in nociceptive circuits in the dorsal horn of the spinal cord. We investigated the contribution of clathrin-dependent endocytosis to sensitization of nociceptors by G protein-coupled receptors (GPCRs) and to synaptic transmission in spinal nociceptive circuits. We determined whether therapeutic targeting of endocytosis could ameliorate pain. mRNA encoding dynamin (Dnm) 1 to 3 and adaptor-associated protein kinase 1 (AAK1), which mediate clathrin-dependent endocytosis, were localized to primary sensory neurons of dorsal root ganglia of mouse and human and to spinal neurons in the dorsal horn of the mouse spinal cord by RNAScope. When injected intrathecally to mice, Dnm and AAK1 siRNA or shRNA knocked down Dnm and AAK1 mRNA in dorsal root ganglia neurons, reversed mechanical and thermal allodynia and hyperalgesia, and normalized nonevoked behavior in preclinical models of inflammatory and neuropathic pain. Intrathecally administered inhibitors of clathrin, Dnm, and AAK1 also reversed allodynia and hyperalgesia. Disruption of clathrin, Dnm, and AAK1 did not affect normal motor functions of behaviors. Patch clamp recordings of dorsal horn neurons revealed that Dnm1 and AAK1 disruption inhibited synaptic transmission between primary sensory neurons and neurons in lamina I/II of the spinal cord dorsal horn by suppressing release of synaptic vesicles from presynaptic primary afferent neurons. Patch clamp recordings from dorsal root ganglion nociceptors indicated that Dnm siRNA prevented sustained GPCR-mediated sensitization of nociceptors. By disrupting synaptic transmission in the spinal cord and blunting sensitization of nociceptors, endocytosis inhibitors offer a therapeutic approach for pain treatment.


Asunto(s)
Neuralgia , Nociceptores , Ratas , Animales , Humanos , Nociceptores/fisiología , Hiperalgesia/metabolismo , Nocicepción/fisiología , Ratas Sprague-Dawley , Transmisión Sináptica , Neuralgia/metabolismo , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal , Ganglios Espinales/fisiología
9.
J Clin Invest ; 132(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35775484

RESUMEN

Maladaptive changes of nerve injury-associated genes in dorsal root ganglia (DRGs) are critical for neuropathic pain genesis. Emerging evidence supports the role of long noncoding RNAs (lncRNAs) in regulating gene transcription. Here we identified a conserved lncRNA, named nerve injury-specific lncRNA (NIS-lncRNA) for its upregulation in injured DRGs exclusively in response to nerve injury. This upregulation was triggered by nerve injury-induced increase in DRG ELF1, a transcription factor that bound to the NIS-lncRNA promoter. Blocking this upregulation attenuated nerve injury-induced CCL2 increase in injured DRGs and nociceptive hypersensitivity during the development and maintenance periods of neuropathic pain. Mimicking NIS-lncRNA upregulation elevated CCL2 expression, increased CCL2-mediated excitability in DRG neurons, and produced neuropathic pain symptoms. Mechanistically, NIS-lncRNA recruited more binding of the RNA-interacting protein FUS to the Ccl2 promoter and augmented Ccl2 transcription in injured DRGs. Thus, NIS-lncRNA participates in neuropathic pain likely by promoting FUS-triggered DRG Ccl2 expression and may be a potential target in neuropathic pain management.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , ARN Largo no Codificante , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Humanos , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/patología , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
J Allergy Clin Immunol ; 149(4): 1473-1480.e6, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34560104

RESUMEN

BACKGROUND: Chronic pruritus, or itch, is common and debilitating, but the neuroimmune mechanisms that drive chronic itch are only starting to be elucidated. Recent studies demonstrate that the IL-33 receptor (IL-33R) is expressed by sensory neurons. However, whether sensory neuron-restricted activity of IL-33 is necessary for chronic itch remains poorly understood. OBJECTIVES: We sought to determine if IL-33 signaling in sensory neurons is critical for the development of chronic itch in 2 divergent pruritic disease models. METHODS: Plasma levels of IL-33 were assessed in patients with atopic dermatitis (AD) and chronic pruritus of unknown origin (CPUO). Mice were generated to conditionally delete IL-33R from sensory neurons. The contribution of neuronal IL-33R signaling to chronic itch development was tested in mouse models that recapitulate key pathologic features of AD and CPUO, respectively. RESULTS: IL-33 was elevated in both AD and CPUO as well as their respective mouse models. While neuron-restricted IL-33R signaling was dispensable for itch in AD-like disease, it was required for the development of dry skin itch in a mouse model that mirrors key aspects of CPUO pathology. CONCLUSIONS: These data highlight how IL-33 may be a predominant mediator of itch in certain contexts, depending on the tissue microenvironment. Further, this study provides insight into future therapeutic strategies targeting the IL-33 pathway for chronic itch.


Asunto(s)
Dermatitis Atópica , Interleucina-33 , Animales , Modelos Animales de Enfermedad , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33/metabolismo , Ratones , Prurito , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Piel
11.
Elife ; 102021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34825887

RESUMEN

Somatosensory neurons with cell bodies in the dorsal root ganglia (DRG) project to the skin, muscles, bones, and viscera to detect touch and temperature as well as to mediate proprioception and many types of interoception. In addition, the somatosensory system conveys the clinically relevant noxious sensations of pain and itch. Here, we used single nuclear transcriptomics to characterize transcriptomic classes of human DRG neurons that detect these diverse types of stimuli. Notably, multiple types of human DRG neurons have transcriptomic features that resemble their mouse counterparts although expression of genes considered important for sensory function often differed between species. More unexpectedly, we identified several transcriptomic classes with no clear equivalent in the other species. This dataset should serve as a valuable resource for the community, for example as means of focusing translational efforts on molecules with conserved expression across species.


Asunto(s)
Núcleo Celular/genética , Ganglios Espinales/metabolismo , Neuronas/metabolismo , Transcriptoma , Adulto , Animales , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Análisis de la Célula Individual
12.
Neuron ; 109(9): 1426-1429, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33957072

RESUMEN

Chronic pain is a disabling disease with limited treatment options. While animal models have revealed important aspects of pain neurobiology, therapeutic translation of this knowledge requires our understanding of these cells and networks of pain in humans. We propose a multi-institutional collaboration to rigorously and ethically address this challenge.


Asunto(s)
Dolor Crónico , Colaboración Intersectorial , Humanos
13.
Front Pain Res (Lausanne) ; 2: 721332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35295508

RESUMEN

Cannabinoid receptors have been identified as potential targets for analgesia from studies on animal physiology and behavior, and from human clinical trials. Here, we sought to improve translational understanding of the mechanisms of cannabinoid-mediated peripheral analgesia. Human lumbar dorsal root ganglia were rapidly recovered from organ donors to perform physiological and anatomical investigations into the potential for cannabinoids to mediate analgesia at the level of the peripheral nervous system. Anatomical characterization of in situ gene expression and immunoreactivity showed that 61 and 53% of human sensory neurons express the CB1 gene and receptor, respectively. Calcium influx evoked by the algogen capsaicin was measured by Fura-2AM in dissociated human sensory neurons pre-exposed to the inflammatory mediator prostaglandin E2 (PGE2) alone or together with CB13 (1 µM), a cannabinoid agonist with limited blood-brain barrier permeability. Both a higher proportion of neurons and a greater magnitude of response to capsaicin were observed after exposure to CB13, indicating cannabinoid-mediated sensitization. In contrast, membrane properties measured by patch-clamp electrophysiology demonstrated that CB13 suppressed excitability and reduced action potential discharge in PGE2-pre-incubated sensory neurons, suggesting the suppression of sensitization. This bidirectional modulation of sensory neuron activity suggests that cannabinoids may suppress overall membrane excitability while simultaneously enhancing responsivity to TRPV1-mediated stimuli. We conclude that peripherally restricted cannabinoids may have both pro- and anti-nociceptive effects in human sensory neurons.

14.
Tissue Eng Part C Methods ; 27(2): 89-99, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33349133

RESUMEN

Prominent clinical problems related to the skin-nerve interface include barrier dysfunction and erythema, but it is the symptoms of pain and itch that most often lead patients to seek medical treatment. Tissue-engineered innervated skin models provide an excellent solution for studying the mechanisms underlying neurocutaneous disorders for drug screening, and cutaneous device development. Innervated skin substitutes provide solutions beyond traditional monolayer cultures and have advantages that make them preferable to in vivo animal studies for certain applications, such as measuring somatosensory transduction. The tissue-engineered innervated skin models replicate the complex stratified epidermis that provides barrier function in native skin, a feature that is lacking in monolayer co-cultures, while allowing for a level of detail in measurement of nerve morphology and function that cannot be achieved in animal models. In this review, the advantages and disadvantages of different cell sources and scaffold materials will be discussed and a presentation of the current state of the field is reviewed. Impact statement A review of the current state of innervated skin substitutes and the considerations that need to be addressed when developing these models. Tissue-engineered skin substitutes are customizable and provide barrier function allowing for screening of topical drugs and for studying nerve function.


Asunto(s)
Descubrimiento de Drogas , Piel Artificial , Animales , Técnicas de Cocultivo , Epidermis , Humanos , Piel
15.
Theranostics ; 10(26): 12111-12126, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204332

RESUMEN

Rationale: Psoriasis is a chronic inflammatory disease caused by a complex interplay between the immune and nervous systems with recurrent scaly skin plaques, thickened stratum corneum, infiltration and activation of inflammatory cells, and itch. Despite an increasing availability of immune therapies, they often have adverse effects, high costs, and dissociated effects on inflammation and itch. Activation of sensory neurons innervating the skin and TRPV1 (transient receptor potential vanilloid 1) are emerging as critical components in the pathogenesis of psoriasis, but little is known about their endogenous inhibitors. Recent studies have demonstrated that resolvins, endogenous lipid mediators derived from omega-3 fatty acids, are potent inhibitors of TRP channels and may offer new therapies for psoriasis without known adverse effects. Methods: We used behavioral, electrophysiological and biochemical approaches to investigate the therapeutic effects of resolvin D3 (RvD3), a novel family member of resolvins, in a preclinical model of psoriasis consisting of repeated topical applications of imiquimod (IMQ) to murine skin, which provokes inflammatory lesions that resemble human psoriasis. Results: We report that RvD3 specifically reduced TRPV1-dependent acute pain and itch in mice. Mechanistically, RvD3 inhibited capsaicin-induced TRPV1 currents in dissociated dorsal root ganglion (DRG) neurons via the N-formyl peptide receptor 2 (i.e. ALX/FPR2), a G-protein coupled receptor. Single systemic administration of RvD3 (2.8 mg/kg) reversed itch after IMQ, and repeated administration largely prevented the development of both psoriasiform itch and skin inflammation with concomitant decreased in calcitonin gene-related peptide (CGRP) expression in DRG neurons. Accordingly, specific knockdown of CGRP in DRG was sufficient to prevent both psoriasiform itch and skin inflammation similar to the effects following RvD3 administration. Finally, we elevated the translational potential of this study by showing that RvD3 significantly inhibited capsaicin-induced TRPV1 activity and CGRP release in human DRG neurons. Conclusions: Our findings demonstrate a novel role for RvD3 in regulating TRPV1/CGRP in mouse and human DRG neurons and identify RvD3 and its neuronal pathways as novel therapeutic targets to treat psoriasis.


Asunto(s)
Ácidos Grasos Insaturados/farmacología , Dolor/tratamiento farmacológico , Prurito/tratamiento farmacológico , Psoriasis/tratamiento farmacológico , Canales Catiónicos TRPV/antagonistas & inhibidores , Animales , Biopsia , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Capsaicina/toxicidad , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/uso terapéutico , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/inmunología , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/inmunología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Dolor/inducido químicamente , Dolor/inmunología , Dolor/patología , Técnicas de Placa-Clamp , Cultivo Primario de Células , Prurito/inducido químicamente , Prurito/inmunología , Prurito/patología , Psoriasis/complicaciones , Psoriasis/inmunología , Psoriasis/patología , Piel/efectos de los fármacos , Piel/inmunología , Piel/inervación , Canales Catiónicos TRPV/metabolismo
16.
J Neuroinflammation ; 17(1): 301, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054763

RESUMEN

BACKGROUND: Polyamine catabolism plays a key role in maintaining intracellular polyamine pools, yet its physiological significance is largely unexplored. Here, we report that the disruption of polyamine catabolism leads to severe cerebellar damage and ataxia, demonstrating the fundamental role of polyamine catabolism in the maintenance of cerebellar function and integrity. METHODS: Mice with simultaneous deletion of the two principal polyamine catabolic enzymes, spermine oxidase and spermidine/spermine N1-acetyltransferase (Smox/Sat1-dKO), were generated by the crossbreeding of Smox-KO (Smox-/-) and Sat1-KO (Sat1-/-) animals. Development and progression of tissue injury was monitored using imaging, behavioral, and molecular analyses. RESULTS: Smox/Sat1-dKO mice are normal at birth, but develop progressive cerebellar damage and ataxia. The cerebellar injury in Smox/Sat1-dKO mice is associated with Purkinje cell loss and gliosis, leading to neuroinflammation and white matter demyelination during the latter stages of the injury. The onset of tissue damage in Smox/Sat1-dKO mice is not solely dependent on changes in polyamine levels as cerebellar injury was highly selective. RNA-seq analysis and confirmatory studies revealed clear decreases in the expression of Purkinje cell-associated proteins and significant increases in the expression of transglutaminases and markers of neurodegenerative microgliosis and astrocytosis. Further, the α-Synuclein expression, aggregation, and polyamination levels were significantly increased in the cerebellum of Smox/Sat1-dKO mice. Finally, there were clear roles of transglutaminase-2 (TGM2) in the cerebellar pathologies manifest in Smox/Sat1-dKO mice, as pharmacological inhibition of transglutaminases reduced the severity of ataxia and cerebellar injury in Smox/Sat1-dKO mice. CONCLUSIONS: These results indicate that the disruption of polyamine catabolism, via coordinated alterations in tissue polyamine levels, elevated transglutaminase activity and increased expression, polyamination, and aggregation of α-Synuclein, leads to severe cerebellar damage and ataxia. These studies indicate that polyamine catabolism is necessary to Purkinje cell survival, and for sustaining the functional integrity of the cerebellum.


Asunto(s)
Acetiltransferasas/deficiencia , Ataxia/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/deficiencia , Células de Purkinje/enzimología , Acetiltransferasas/genética , Animales , Apoptosis/fisiología , Ataxia/genética , Ataxia/patología , Cerebelo/enzimología , Cerebelo/patología , Inflamación/enzimología , Inflamación/genética , Inflamación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Células de Purkinje/patología , Poliamino Oxidasa
17.
SSRN ; : 3581446, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32714114

RESUMEN

The SARS-CoV-2 virus infects cells of the airway and lungs in humans causing the disease COVID-19. This disease is characterized by cough, shortness of breath, and in severe cases causes pneumonia and acute respiratory distress syndrome (ARDS) which can be fatal. Bronchial alveolar lavage fluid (BALF) and plasma from mild and severe cases of COVID-19 have been profiled using protein measurements and bulk and single cell RNA sequencing. Onset of pneumonia and ARDS can be rapid in COVID-19, suggesting a potential neuronal involvement in pathology and mortality. We sought to quantify how immune cells might interact with sensory innervation of the lung in COVID-19 using published data from patients, existing RNA sequencing datasets from human dorsal root ganglion neurons and other sources, and a genome-wide ligand-receptor pair database curated for pharmacological interactions relevant for neuro-immune interactions. Our findings reveal a landscape of ligand-receptor interactions in the lung caused by SARS-CoV-2 viral infection and point to potential interventions to reduce the burden of neurogenic inflammation in COVID-19 disease. In particular, our work highlights opportunities for clinical trials with existing or under development rheumatoid arthritis and other (e.g. CCL2, CCR5 or EGFR inhibitors) drugs to treat high risk or severe COVID-19 cases.

18.
Brain Behav Immun ; 89: 559-568, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32497778

RESUMEN

The SARS-CoV-2 virus infects cells of the airway and lungs in humans causing the disease COVID-19. This disease is characterized by cough, shortness of breath, and in severe cases causes pneumonia and acute respiratory distress syndrome (ARDS) which can be fatal. Bronchial alveolar lavage fluid (BALF) and plasma from mild and severe cases of COVID-19 have been profiled using protein measurements and bulk and single cell RNA sequencing. Onset of pneumonia and ARDS can be rapid in COVID-19, suggesting a potential neuronal involvement in pathology and mortality. We hypothesized that SARS-CoV-2 infection drives changes in immune cell-derived factors that then interact with receptors expressed by the sensory neuronal innervation of the lung to further promote important aspects of disease severity, including ARDS. We sought to quantify how immune cells might interact with sensory innervation of the lung in COVID-19 using published data from patients, existing RNA sequencing datasets from human dorsal root ganglion neurons and other sources, and a genome-wide ligand-receptor pair database curated for pharmacological interactions relevant for neuro-immune interactions. Our findings reveal a landscape of ligand-receptor interactions in the lung caused by SARS-CoV-2 viral infection and point to potential interventions to reduce the burden of neurogenic inflammation in COVID-19 pulmonary disease. In particular, our work highlights opportunities for clinical trials with existing or under development rheumatoid arthritis and other (e.g. CCL2, CCR5 or EGFR inhibitors) drugs to treat high risk or severe COVID-19 cases.


Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Pulmón/inmunología , Pulmón/inervación , Neumonía Viral/inmunología , Receptores de Citocinas/inmunología , Células Receptoras Sensoriales/inmunología , Antirreumáticos/uso terapéutico , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Citocinas/metabolismo , Bases de Datos Factuales , Ganglios Espinales , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Terapia Molecular Dirigida , Nociceptores/metabolismo , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/metabolismo , RNA-Seq , Receptores de Citocinas/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/fisiopatología , SARS-CoV-2 , Células Receptoras Sensoriales/metabolismo , Transcriptoma , Regulación hacia Arriba , Tratamiento Farmacológico de COVID-19
20.
eNeuro ; 7(2)2020.
Artículo en Inglés | MEDLINE | ID: mdl-32071073

RESUMEN

Pain is a multidimensional experience of sensory-discriminative, cognitive, and affective processes; however, current basic research methods rely heavily on response to threshold stimuli, bypassing the supraspinal processing that ultimately gives rise to the pain experience. We developed the operant plantar thermal assay (OPTA), which utilizes a novel, conflict-based operant task requiring evaluation and active decision-making to obtain reward under thermally aversive conditions to quantify thermal pain tolerance. In baseline measures, male and female mice exhibited similar temperature preferences, however in the OPTA, female mice exhibited greater temperature-dependent tolerance, as defined by choice time spent in an adverse thermal condition to obtain reward. Increasing reward salience (4% vs 10% sucrose solution) led to increased thermal tolerance for males but not females. To determine whether neuropathic and inflammatory pain models alter thermal tolerance, animals with chronic constriction injury (CCI) or complete Freund's adjuvant (CFA), respectively, were tested in the OPTA. Surprisingly, neuropathic animals exhibited increased thermal tolerance, as shown by greater time spent in the reward zone in an adverse thermal condition, compared with sham animals. There was no effect of inflammation on thermal tolerance. Administration of clonidine in the CCI model led to increased thermal tolerance in both injured and sham animals. In contrast, the non-steroidal anti-inflammatory meloxicam was anti-hyperalgesic in the CFA model, but reduced thermal pain tolerance. These data support the feasibility of using the OPTA to assess thermal pain tolerance to gain new insights into complex pain behaviors and to investigate novel aspects of analgesic efficacy.


Asunto(s)
Hiperalgesia , Dolor , Analgésicos/farmacología , Animales , Modelos Animales de Enfermedad , Femenino , Inflamación , Masculino , Ratones , Dolor/tratamiento farmacológico , Dimensión del Dolor , Umbral del Dolor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA