Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Ecotoxicol Environ Saf ; 245: 114074, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36137423

RESUMEN

Fish embryos can bioaccumulate and are particularly sensitive to a wide range of contaminants, which makes them suitable sentinels for environmental biomonitoring. However, fish embryos are very rarely utilized in environmental monitoring surveys, possibly due to their fragility and seasonality. In the present work, we assessed the applicability of caged lumpfish (Cyclopterus lumpus) eggs for in situ biomonitoring of exposure and effects of organic contaminants focusing on polyaromatic hydrocarbons and phenolic compounds. Fertilized eggs (1 dpf) were transplanted for 17-19 days at different locations that differed in terms of contaminant load, depths and weather conditions, namely at three stations close to the city of Trondheim (two harbour areas and a one in the Fjord) and three stations at a coastal aquaculture facility. High survival upon retrieval after deployment showed that lumpfish eggs are relatively robust and survive encaging in different environments. Bioaccumulation of organic contaminants (PAHs and phenolic compounds) was measured and potential effects on hatching, development, survival and larvae morphometry were determined. Chemical analyses showed that especially PAHs were effectively accumulated in eggs in contaminated sites, with concentrations of Æ©PAHs being 15 - 25 times higher in harbour areas compared to those at the aquaculture facility. A higher incidence of embryonic deformations was observed in the most polluted deployment location, but larvae morphometry revealed no evidence of toxicity related to pollutant body burden. In conclusion, the in-situ exposure method was proven to work well, making it attractive for implementations in environmental monitoring programs.


Asunto(s)
Contaminantes Ambientales , Enfermedades de los Peces , Perciformes , Animales , Bioacumulación , Peces , Hidrocarburos , Océanos y Mares , Calidad del Agua , Óvulo
2.
MethodsX ; 9: 101773, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813159

RESUMEN

Microscopic imaging and morphometric measurement of fish embryos and larvae is essential in environmental monitoring of fish populations and to evaluate larvae development in aquaculture. Traditional microscopy methods require time-consuming, repetitive work by human experts. We present a method for fast imaging and analysis of millimetre-scale ichthyoplankton suspended in seawater. Our system can be easily built from common and off-the-shelf components and uses open-source software for image capture and analysis. Our system obtains images of similar quality to traditional microscopy, and biological measurements comparable to those by human experts, with minimal human interaction. This saves time and effort, while increasing the size of data sets obtained. We demonstrate our approach with cod eggs and larvae, and present results showing biologically relevant endpoints including egg diameter, larval standard length, yolk volume and eye diameter, with comparison to similar measurements reported in the literature. • High throughput, microscope-scale imaging of fish eggs and larvae • Automated measurement of biologically relevant endpoints • Easily built from off-the-shelf components and open-source software.

3.
Toxicol Rep ; 8: 1754-1761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703771

RESUMEN

3,4-dichloroaniline (3,4-DCA) is one of the most widely produced anilines world-wide, used in plastic packaging, fabrics, pharmaceuticals, pesticides, dyes and paints as well as being a degradation product of several pesticides. 3,4-DCA has been detected in freshwater, brackish and marine environments. Although freshwater toxicity thresholds exist, very little toxicological information is available on marine and cold-water species. In this study, we exposed Atlantic cod (Gadus morhua) embryos (3-7 days post fertilization) to 3,4-DCA concentrations ranging from 8-747 µg/L for 4 days followed by a recovery period in clean sea water until 14 days post fertilization (dpf). The cod embryos were significantly more sensitive to acute 3,4-DCA exposure compared to other species tested and reported in the literature. At the highest concentration (747 µg/L), no embryos survived until hatch, and even at the lowest concentration (8 µg/L), a small, but significant increase in mortality was observed at 14 dpf. Delayed and concentration-dependent effects on surviving yolk-sac larvae, manifested as cardiac, developmental and morphometric alterations, more than a week after exposure suggest potential long-term effects of transient embryonic exposure to low concentrations of 3,4-DCA.

4.
Sci Total Environ ; 705: 135950, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31841929

RESUMEN

When an oil field ages and the pressure in the reservoir decreases, or for oil fields with heavy oil, there may be a need for enhanced oil recovery (EOR) technologies. Polymer injection is a water-based EOR method where the viscosity of the water injected for pressure support is increased by mixing with a high concentration polymer solution. In this project, the potential fate of a synthetic anionic polyacrylamide (APAM) in seawater was investigated, since these EOR polymers may enter the marine environment with the produced water (PW). The main objective of the study was to determine if the APAM will interact with cells or aggregates (marine snow) of microalgae, resulting in potential polymer transport from the euphotic zone to the seabed. Three different species of microalgae with different degree of autotrophy (autotroph, mixotroph and heterotroph) were exposed to fluorescence-tagged APAM. Attachment to algal cells or aggregates formed by active or heat-inactivated algae were analysed by fluorescence microscopy and fluorometry. Our results suggested that attachment of APAM to cells of the algal species included in his study was negligible. A carousel system with natural seawater (SW) was used for formation of algal aggregates, one of the key components of marine snow. When aggregates of the diatom Thalassiosira rotula were formed in the presence of the fluorescence-tagged APAM, and at SW temperatures relevant for the Norwegian Continental Shelf, the polymer was nearly exclusively measured in the water phase after separation from the aggregates. The aggregate measurements therefore confirmed the results from the attachment studies, and we found no evidence of accumulation of APAM in aggregates formed from algae. Marine snow from algae is therefore not expected to significantly contribute to sedimentation of APAM dissolved in the water column.


Asunto(s)
Microalgas , Resinas Acrílicas , Sedimentos Geológicos , Agua de Mar
5.
Mar Pollut Bull ; 143: 256-263, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31789161

RESUMEN

The degree to which droplet shedding (tip-streaming) can modify the size of rising oil droplets has been a topic of growing interest in relation to subsea dispersant injection. We present an experimental and numerical approach predicting oil droplet shedding, covering a wide range of viscosities and interfacial tensions. Shedding was observed within a specific range of droplet sizes when the oil viscosity is sufficiently high and the IFT is sufficiently low. The affected droplets are observed to reduce in size, as smaller satellite droplets are shed, until the parent droplet reaches a stable size. Shedding of smaller droplets is related to the viscosity-dominated modified capillary number (Ca'), especially for low dispersant dosages recommended for subsea dispersant injection. This, in combination with the IFT-dominated Weber number (We), characterise droplets into three possible states: 1) stable (Ca' < 0.21 &We<12); 2) tip-streaming (Ca' > 0.21 &We<12); 3) unstable and subject to total breakup (We>12).


Asunto(s)
Petróleo , Agua de Mar/química , Contaminantes Químicos del Agua/química , Contaminación por Petróleo , Viscosidad
6.
Mar Pollut Bull ; 140: 485-492, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30803669

RESUMEN

Both oil droplets and gas bubbles have simultaneously been quantified in laboratory experiments that simulate deep-water subsea releases of both live oil (saturated with gas) and additional natural gas under high pressure. These data have been used to calculate particle size distributions (50-5000 µm) for both oil and gas. The experiments showed no significant difference in oil droplet sizes versus pressure (from 5 m to 1750 m) for experiments with live oil. For combined releases of live oil and natural gas, oil droplet sizes showed a clear reduction as a function of increased gas void fraction (increased release velocity) and a weak reduction with increased depth (increased gas density/momentum). Oil droplets were reduced by a factor of 3 to 4 during simulated subsea dispersant injection (SSDI) and no significant effect of pressure was observed. This indicates that SSDI effectiveness is not dependent on water depth or pressure.


Asunto(s)
Gas Natural/análisis , Yacimiento de Petróleo y Gas , Contaminación por Petróleo/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Modelos Teóricos , Texas
7.
Mar Pollut Bull ; 138: 520-525, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30660302

RESUMEN

Limited experimental and field data are available describing oil droplet formation from subsea releases at high pressure. There are also analytical challenges quantifying oil droplets over a wide size and concentrations range at high pressure. This study quantified oil droplets released from an orifice in seawater at low and high pressure (5 m and 1750 m depth). Oil droplet sizes were quantified using a newly developed sensor (Silhouette camera or SilCam). The droplet sizes measured during experiments at low and high pressure, using the same release conditions, showed no significant difference as a function of pressure. This lack of a pressure effect on oil droplet sizes was observed for both untreated oil and for droplet formation during subsea dispersant injection or SSDI. This strongly indicates that the effectiveness of SSDI is not influenced by water depth or pressure, at least for simulated subsea releases of oil alone (no gas).


Asunto(s)
Hidrología/métodos , Petróleo , Diseño de Equipo , Hidrología/instrumentación , Laboratorios , Gas Natural , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA