Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Med Chem ; 67(6): 4655-4675, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38462716

RESUMEN

The ubiquitously expressed protein tyrosine phosphatase SHP2 is required for signaling downstream of receptor tyrosine kinases (RTKs) and plays a role in regulating many cellular processes. Genetic knockdown and pharmacological inhibition of SHP2 suppresses RAS/MAPK signaling and inhibit the proliferation of RTK-driven cancer cell lines. Here, we describe the first reported fragment-to-lead campaign against SHP2, where X-ray crystallography and biophysical techniques were used to identify fragments binding to multiple sites on SHP2. Structure-guided optimization, including several computational methods, led to the discovery of two structurally distinct series of SHP2 inhibitors binding to the previously reported allosteric tunnel binding site (Tunnel Site). One of these series was advanced to a low-nanomolar lead that inhibited tumor growth when dosed orally to mice bearing HCC827 xenografts. Furthermore, a third series of SHP2 inhibitors was discovered binding to a previously unreported site, lying at the interface of the C-terminal SH2 and catalytic domains.


Asunto(s)
Neoplasias , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Humanos , Ratones , Animales , Transducción de Señal , Proteínas Tirosina Quinasas Receptoras/metabolismo , Sitio Alostérico
2.
Int J Mol Sci ; 22(23)2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34884838

RESUMEN

Alterations to amino acid residues G4946 and I4790, associated with resistance to diamide insecticides, suggests a location of diamide interaction within the pVSD voltage sensor-like domain of the insect ryanodine receptor (RyR). To further delineate the interaction site(s), targeted alterations were made within the same pVSD region on the diamondback moth (Plutella xylostella) RyR channel. The editing of five amino acid positions to match those found in the diamide insensitive skeletal RyR1 of humans (hRyR1) in order to generate a human-Plutella chimeric construct showed that these alterations strongly reduce diamide efficacy when introduced in combination but cause only minor reductions when introduced individually. It is concluded that the sites of diamide interaction on insect RyRs lie proximal to the voltage sensor-like domain of the RyR and that the main site of interaction is at residues K4700, Y4701, I4790 and S4919 in the S1 to S4 transmembrane domains.


Asunto(s)
Diamida/química , Proteínas de Insectos/química , Canal Liberador de Calcio Receptor de Rianodina/química , Animales , Sitios de Unión , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Diamida/metabolismo , Diamida/farmacología , Humanos , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/efectos de los fármacos , Insecticidas/química , Insecticidas/metabolismo , Insecticidas/farmacología , Mariposas Nocturnas/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , ortoaminobenzoatos/química , ortoaminobenzoatos/metabolismo , ortoaminobenzoatos/farmacología
3.
J Med Chem ; 64(21): 15949-15972, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34705450

RESUMEN

The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.


Asunto(s)
Ácidos Carboxílicos/farmacología , Descubrimiento de Drogas , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Animales , Ácidos Carboxílicos/química , Línea Celular , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Unión Proteica , Pirazoles , Relación Estructura-Actividad
4.
J Med Chem ; 62(9): 4683-4702, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-30973731

RESUMEN

The KEAP1-NRF2-mediated cytoprotective response plays a key role in cellular homoeostasis. Insufficient NRF2 signaling during chronic oxidative stress may be associated with the pathophysiology of several diseases with an inflammatory component, and pathway activation through direct modulation of the KEAP1-NRF2 protein-protein interaction is being increasingly explored as a potential therapeutic strategy. Nevertheless, the physicochemical nature of the KEAP1-NRF2 interface suggests that achieving high affinity for a cell-penetrant druglike inhibitor might be challenging. We recently reported the discovery of a highly potent tool compound which was used to probe the biology associated with directly disrupting the interaction of NRF2 with the KEAP1 Kelch domain. We now present a detailed account of the medicinal chemistry campaign leading to this molecule, which included exploration and optimization of protein-ligand interactions in three energetic "hot spots" identified by fragment screening. In particular, we also discuss how consideration of ligand conformational stabilization was important to its development and present evidence for preorganization of the lead compound which may contribute to its high affinity and cellular activity.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Propionatos/metabolismo , Unión Proteica/efectos de los fármacos , Sitios de Unión , Línea Celular , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Conformación Molecular , Factor 2 Relacionado con NF-E2/química , Propionatos/síntesis química , Propionatos/química , Estereoisomerismo , Relación Estructura-Actividad
5.
Drug Discov Today ; 24(5): 1081-1086, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30878562

RESUMEN

We present a novel crystallographic screening methodology (MiniFrags) that employs high-concentration aqueous soaks with a chemically diverse and ultra-low-molecular-weight library (heavy atom count 5-7) to identify ligand-binding hot and warm spots on proteins. We propose that MiniFrag screening represents a highly effective method for guiding optimisation of fragment-derived lead compounds or chemical tools and that the high screening hit rates reflect enhanced sampling of chemical space.


Asunto(s)
Diseño de Fármacos , Cristalografía , Ligandos , Peso Molecular , Bibliotecas de Moléculas Pequeñas
6.
Birth Defects Res ; 110(15): 1194-1204, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30079508

RESUMEN

BACKGROUND: Naturally hypoxic conditions in amniote embryos play important roles in normal development. We previously showed that a hypoxic condition is required to produce a sufficient amount of neural crest cells (NCCs) during embryogenesis and that promoting a hypoxic response by prolyl-hydroxylase (PHD) inhibitors increases NCCs. Given that PHD inhibitors are considered as a potential treatment for anemia and ischemic diseases, we investigated the phenotypic effect of PHD inhibitors on embryonic development. METHODS: Chick embryos were administered with PHD inhibitors prior to the induction of NCCs on day 1.5. Three main events relating to hypoxia, NCCs induction, vasculogenesis and chondrogenesis, were examined. RESULTS: PHD inhibitors caused an increase of Sox10-positive NCCs in vivo. Vasculogenesis was promoted temporarily, although rapid vasculogenesis diminished the effect by day 5 in cephalic and pharyngeal regions. Studies on chondrogenesis at day 7 showed advanced development of the otic capsule, a cartilaginous structure encapsulating the inner ear. Analysis by X-ray micro-computed-tomography (µCT) revealed smaller otic capsule, suggesting premature differentiation. This in turn, deformed the developing semicircular canals within it. Other skeletal structures such as the palate and jaw were unaffected. The localized effect on the otic capsule was considered a result of the multiple effects from the hypoxic responses, increased NCCs and promoted chondrogenesis. CONCLUSION: Given the wide range of clinical applications being considered for PHD inhibitors, this study provides crucial information to caution and guide use of PHD inhibitors when treating women of childbearing age.


Asunto(s)
Oído Interno/anomalías , Ganglios Parasimpáticos/anomalías , Inhibidores de Prolil-Hidroxilasa/efectos adversos , Animales , Diferenciación Celular/efectos de los fármacos , Embrión de Pollo , Condrogénesis/efectos de los fármacos , Oído Interno/embriología , Desarrollo Embrionario/efectos de los fármacos , Ganglios Parasimpáticos/embriología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Cresta Neural/efectos de los fármacos
7.
Curr Opin Insect Sci ; 27: 103-110, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-30025625

RESUMEN

In this short review, we highlight three functional genomic technologies that have recently been contributing to the understanding of the molecular mechanisms underpinning insecticide resistance: the GAL4/UAS system, a molecular tool used to express genes of interest in a spatiotemporal controlled manner; the RNAi system, which is used to knock-down gene expression; and the most recently developed gene editing tool, CRISPR/Cas9, which can be used to knock-out and knock-in sequences of interest.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Genómica/métodos , Insectos/efectos de los fármacos , Resistencia a los Insecticidas/genética , Animales , Insectos/genética
8.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-28404779

RESUMEN

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Asunto(s)
Curaduría de Datos/normas , Conjuntos de Datos como Asunto , Disciplinas de las Ciencias Biológicas/estadística & datos numéricos , Reproducibilidad de los Resultados , Investigación/normas
9.
J Med Chem ; 59(8): 3991-4006, 2016 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-27031670

RESUMEN

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction. X-ray crystallographic screening identified three distinct "hot-spots" for fragment binding within the NRF2 binding pocket of KEAP1, allowing progression of a weak fragment hit to molecules with nanomolar affinity for KEAP1 while maintaining drug-like properties. This work resulted in a promising lead compound which exhibits tight and selective binding to KEAP1, and activates the NRF2 antioxidant response in cellular and in vivo models, thereby providing a high quality chemical probe to explore the therapeutic potential of disrupting the KEAP1-NRF2 interaction.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Células Cultivadas , Cristalografía por Rayos X , Descubrimiento de Drogas , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/química , Ratones , Factor 2 Relacionado con NF-E2/química , Unión Proteica
10.
Pest Manag Sci ; 72(1): 140-9, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25612154

RESUMEN

BACKGROUND: We report on the status of imidacloprid and ethiprole resistance in Nilaparvata lugens Stål collected from across South and East Asia over the period 2005-2012. RESULTS: A resistance survey found that field populations had developed up to 220-fold resistance to imidacloprid and 223-fold resistance to ethiprole, and that many of the strains collected showed high levels of resistance to both insecticides. We also found that the cytochrome P450 CYP6ER1 was significantly overexpressed in 12 imidacloprid-resistant populations tested when compared with a laboratory susceptible strain, with fold changes ranging from ten- to 90-fold. In contrast, another cytochrome P450 CYP6AY1, also implicated in imidacloprid resistance, was underexpressed in ten of the populations and only significantly overexpressed (3.5-fold) in a single population from India compared with the same susceptible strain. Further selection of two of the imidacloprid-resistant field strains correlated with an approximate threefold increase in expression of CYP6ER1. CONCLUSIONS: We conclude that overexpression of CYP6ER1 is associated with field-evolved resistance to imidacloprid in brown planthopper populations in five countries in South and East Asia.


Asunto(s)
Hemípteros/efectos de los fármacos , Imidazoles/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Nitrocompuestos/farmacología , Pirazoles/farmacología , Animales , Asia Sudoriental , Sistema Enzimático del Citocromo P-450/metabolismo , Asia Oriental , Femenino , Hemípteros/genética , India , Neonicotinoides
11.
Curr Biol ; 25(21): 2839-2844, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26592343

RESUMEN

Males often face a trade-off between investments in precopulatory and postcopulatory traits [1], particularly when male-male contest competition determines access to mates [2]. To date, studies of precopulatory strategies have largely focused on visual ornaments (e.g., coloration) or weapon morphology (e.g., antlers, horns, and canines). However, vocalizations can also play an important role in both male competition and female choice [3-5]. We investigated variation in vocal tract dimensions among male howler monkeys (Alouatta spp.), which produce loud roars using a highly specialized and greatly enlarged hyoid bone and larynx [6]. We examined the relative male investment in hyoids and testes among howler monkey species in relation to the level of male-male competition and analyzed the acoustic consequences of variation in hyoid morphology. Species characterized by single-male groups have large hyoids and small testes, suggesting high levels of vocally mediated competition. Larger hyoids lower formant frequencies, probably increasing the acoustic impression of male body size and playing a role analogous to investment in large body size or weaponry. Across species, as the number of males per group increases, testes volume also increases, indicating higher levels of postcopulatory sperm competition, while hyoid volume decreases. These results provide the first evidence of an evolutionary trade-off between investment in precopulatory vocal characteristics and postcopulatory sperm production.


Asunto(s)
Alouatta/fisiología , Hueso Hioides/fisiología , Testículo/fisiología , Alouatta/anatomía & histología , Alouatta/genética , Animales , Evolución Biológica , Copulación/fisiología , Femenino , Hueso Hioides/anatomía & histología , Masculino , Fenotipo , Conducta Sexual Animal/fisiología , Conducta Social , Espermatozoides/fisiología , Testículo/anatomía & histología , Vocalización Animal/fisiología
12.
Am J Phys Anthropol ; 157(2): 260-75, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25677783

RESUMEN

Long bones respond to mechanical loading through functional adaptation in a suite of morphological characteristics that together ensure structural competence to in vivo loading. As such, adult bone structure is often used to make inferences about past behavior from archaeological remains. However, such biomechanical approaches often investigate change in just one aspect of morphology, typically cross-sectional morphology or trabecular structure. The relationship between longitudinal bone curvature and mobility patterns is less well understood, particularly in the tibia, and it is unknown how tibial curvature and diaphyseal cross-sectional geometry interact to meet the structural requirements of loading. This study examines tibial curvature and its relationship with diaphyseal cross-sectional geometry (CSG) and body size in preindustrial Central Europeans spanning ∼6150 years following the introduction of agriculture in the region. Anteroposterior centroid displacement from the proximo-distal longitudinal axis was quantified at nine diaphyseal section locations (collectively representative of diaphyseal curvature) in 216 tibial three-dimensional laser scans. Results documented significant and corresponding temporal declines in midshaft centroid displacement and CSG properties. Significant correlations were found between mid-diaphyseal centroid displacement and all mobility-related CSG properties, while the relationship weakened toward the diaphyseal ends. No significant relationship was found between centroid displacement and body size variables with the exception of the most distal section location. Results support a relationship between tibial curvature and cross-sectional geometry among prehistoric Central European agricultural populations, and suggest that changes in mechanical loading may have influenced a suite of morphological features related to bone adaptation in the lower limb.


Asunto(s)
Agricultura/historia , Tibia/anatomía & histología , Tibia/fisiología , Adulto , Antropología Física , Antropometría , Fenómenos Biomecánicos/fisiología , Europa (Continente) , Femenino , Historia Antigua , Humanos , Masculino
13.
Am J Hum Biol ; 26(6): 822-35, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25163696

RESUMEN

OBJECTIVES: Variation in relative body breadth between individuals is potentially a significant influence on the biomechanical loading placed upon the lower limb. This study investigates the influence of relative body breadth on the periosteal geometry of the diaphyses of the limb bones among individuals from a broad range of human populations. METHODS: This study applies a 3D laser scanning approach to the extraction and analysis of periosteal cross-sectional properties throughout the diaphyses of the femur and tibia to test for influences of body shape on diaphyseal morphology throughout the lower limb. Analyses are based on data collected from seven populations, encompassing a broad range of modern human variation in body shape. RESULTS: Hypertrophy of the proximal end of the femur diaphysis in wider bodied individuals is observed and appears to extend at least as far as the femur midshaft, while the mid diaphyseal region of the tibia is the least influenced by body shape. However correlations with relative body breadth were also observed towards the distal end of the femur diaphysis and towards both ends of the tibial diaphysis, especially among females. CONCLUSIONS: Relative body breadth is correlated with the periosteal geometry of the lower limb bones, particularly towards the proximal end of the femur diaphysis, but correlations in other regions also suggest integration of the diaphyseal geometry with epiphyseal dimensions.


Asunto(s)
Tamaño Corporal , Fémur/anatomía & histología , Tibia/anatomía & histología , Adulto , Fenómenos Biomecánicos , Diáfisis/anatomía & histología , Femenino , Humanos , Masculino , Tamaño de los Órganos , Grupos Raciales
14.
PLoS One ; 9(6): e98896, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24896564

RESUMEN

The protein Keap1 is central to the regulation of the Nrf2-mediated cytoprotective response, and is increasingly recognized as an important target for therapeutic intervention in a range of diseases involving excessive oxidative stress and inflammation. The BTB domain of Keap1 plays key roles in sensing environmental electrophiles and in mediating interactions with the Cul3/Rbx1 E3 ubiquitin ligase system, and is believed to be the target for several small molecule covalent activators of the Nrf2 pathway. However, despite structural information being available for several BTB domains from related proteins, there have been no reported crystal structures of Keap1 BTB, and this has precluded a detailed understanding of its mechanism of action and interaction with antagonists. We report here the first structure of the BTB domain of Keap1, which is thought to contain the key cysteine residue responsible for interaction with electrophiles, as well as structures of the covalent complex with the antagonist CDDO/bardoxolone, and of the constitutively inactive C151W BTB mutant. In addition to providing the first structural confirmation of antagonist binding to Keap1 BTB, we also present biochemical evidence that adduction of Cys 151 by CDDO is capable of inhibiting the binding of Cul3 to Keap1, and discuss how this class of compound might exert Nrf2 activation through disruption of the BTB-Cul3 interface.


Asunto(s)
Imidazoles/química , Péptidos y Proteínas de Señalización Intracelular/química , Ácido Oleanólico/análogos & derivados , Dominios y Motivos de Interacción de Proteínas , Sitios de Unión , Humanos , Imidazoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Proteína 1 Asociada A ECH Tipo Kelch , Modelos Moleculares , Conformación Molecular , Mutación , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Unión Proteica , Relación Estructura-Actividad
15.
Am J Phys Anthropol ; 150(3): 442-52, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23359138

RESUMEN

Cross-sectional geometric (CSG) properties of human long bone diaphyses are typically calculated from both periosteal and endosteal contours. Though quantification of both is desirable, periosteal contours alone have provided accurate predictions of CSG properties at the midshaft in previous studies. The relationship between CSG properties calculated from external contours and "true" (endosteal and periosteal) CSG properties, however, has yet to be examined along the whole diaphysis. Cross-sectional computed tomography scans were taken from 21 locations along humeral, femoral, and tibial diaphyses in 20 adults from a late prehistoric central Illinois Valley cemetery. Mechanical properties calculated from images with (a) artificially filled medullary cavities ("solid") and (b) true unaltered cross-sections were compared at each section location using least squares regression. Results indicate that, in this sample, polar second moments of area (J), polar section moduli (Z(p) ), and cross-sectional shape (I(max) /I(min) ) calculated from periosteal contours correspond strongly with those calculated from cross-sections that include the medullary cavity. Correlations are high throughout most of the humeral diaphysis and throughout large portions of femoral and tibial diaphyses (R(2) = 0.855-0.998, all P < 0.001, %SEE ≤ 8.0, %PE ≤ 5.0), the major exception being the proximal quarter of the tibial diaphysis for J and Z(p). The main source of error was identified as variation in %CA. Results reveal that CSG properties quantified from periosteal contours provide comparable results to (and are likely to detect the same differences among individuals as) true CSG properties along large portions of long bone diaphyses.


Asunto(s)
Diáfisis/anatomía & histología , Huesos de la Pierna/anatomía & histología , Adulto , Antropología Física , Fenómenos Biomecánicos , Cementerios , Femenino , Historia Medieval , Humanos , Illinois , Masculino , Análisis de Regresión , Tomografía Computarizada por Rayos X
16.
Clin Cancer Res ; 18(14): 3912-23, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22781553

RESUMEN

PURPOSE: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. EXPERIMENTAL DESIGN: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. RESULTS: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. CONCLUSIONS: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial.


Asunto(s)
Antineoplásicos/administración & dosificación , Neoplasias , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de Proteínas Quinasas/administración & dosificación , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación/efectos de los fármacos , Pirimidinas/administración & dosificación , Pirroles/administración & dosificación , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Top Curr Chem ; 317: 33-59, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21678136

RESUMEN

The fragment-based approach is now well established as an important component of modern drug discovery. A key part in establishing its position as a viable technique has been the development of a range of biophysical methodologies with sufficient sensitivity to detect the binding of very weakly binding molecules. X-ray crystallography was one of the first techniques demonstrated to be capable of detecting such weak binding, but historically its potential for screening was under-appreciated and impractical due to its relatively low throughput. In this chapter we discuss the various benefits associated with fragment-screening by X-ray crystallography, and describe the technical developments we have implemented to allow its routine use in drug discovery. We emphasize how this approach has allowed a much greater exploitation of crystallography than has traditionally been the case within the pharmaceutical industry, with the rapid and timely provision of structural information having maximum impact on project direction.


Asunto(s)
Cristalografía por Rayos X , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Bibliotecas de Moléculas Pequeñas/análisis , Bibliotecas de Moléculas Pequeñas/química , Modelos Moleculares
18.
Mol Cancer Ther ; 9(5): 1100-10, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20423992

RESUMEN

The serine/threonine kinase AKT plays a pivotal role in signal transduction events involved in malignant transformation and chemoresistance and is an attractive target for the development of cancer therapeutics. Fragment-based lead discovery, combined with structure-based drug design, has recently identified AT7867 as a novel and potent inhibitor of both AKT and the downstream kinase p70 S6 kinase (p70S6K) and also of protein kinase A. This ATP-competitive small molecule potently inhibits both AKT and p70S6K activity at the cellular level, as measured by inhibition of GSK3beta and S6 ribosomal protein phosphorylation, and also causes growth inhibition in a range of human cancer cell lines as a single agent. Induction of apoptosis was detected by multiple methods in tumor cells following AT7867 treatment. Administration of AT7867 (90 mg/kg p.o. or 20 mg/kg i.p.) to athymic mice implanted with the PTEN-deficient U87MG human glioblastoma xenograft model caused inhibition of phosphorylation of downstream substrates of both AKT and p70S6K and induction of apoptosis, confirming the observations made in vitro. These doses of AT7867 also resulted in inhibition of human tumor growth in PTEN-deficient xenograft models. These data suggest that the novel strategy of AKT and p70S6K blockade may have therapeutic value and supports further evaluation of AT7867 as a single-agent anticancer strategy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Proteína Oncogénica v-akt/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Quinasas S6 Ribosómicas 70-kDa/antagonistas & inhibidores , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Células HCT116 , Células HT29 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Modelos Moleculares , Neoplasias/metabolismo , Neoplasias/patología , Piperidinas/administración & dosificación , Piperidinas/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacocinética , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Med Chem ; 53(5): 2239-49, 2010 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-20151677

RESUMEN

Protein kinase B (PKB or Akt) is an important component of intracellular signaling pathways regulating growth and survival. Signaling through PKB is frequently deregulated in cancer, and inhibitors of PKB therefore have potential as antitumor agents. The optimization of lipophilic substitution within a series of 4-benzyl-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-amines provided ATP-competitive, nanomolar inhibitors with up to 150-fold selectivity for inhibition of PKB over the closely related kinase PKA. Although active in cellular assays, compounds containing 4-amino-4-benzylpiperidines underwent metabolism in vivo, leading to rapid clearance and low oral bioavailability. Variation of the linker group between the piperidine and the lipophilic substituent identified 4-amino-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamides as potent and orally bioavailable inhibitors of PKB. Representative compounds modulated biomarkers of signaling through PKB in vivo and strongly inhibited the growth of human tumor xenografts in nude mice at well-tolerated doses.


Asunto(s)
Antineoplásicos/síntesis química , Piperidinas/síntesis química , Inhibidores de Proteínas Quinasas/síntesis química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas/síntesis química , Pirroles/síntesis química , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Semivida , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Ratones , Ratones Desnudos , Piperidinas/química , Piperidinas/farmacocinética , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Pirimidinas/química , Pirimidinas/farmacocinética , Pirroles/química , Pirroles/farmacocinética , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Curr Top Med Chem ; 9(18): 1705-17, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19929839

RESUMEN

Multiple ligand efficient fragment inhibitors of protein kinase B were identified through a combined in silico compound screen and high-throughput crystallographic analysis of protein-ligand structures. A well-validated apo-PKB-PKA chimeric protein provided a convenient platform for high-throughput crystallography by soaking of inhibitors, and a method for the determination of PKB-ligand structures was developed to support inhibitor development. Pyrazole and azaindole fragment hits with micromolar activity were rapidly progressed to nanomolar inhibitors of PKB with activity in cells using crystallographic analysis of inhibitor binding modes to guide medicinal chemistry. Compounds with selectivity for PKB over PKA and other kinases were identified by this approach, resulting in potent inhibitors with in vivo activity through both oral and systemic administration, and suitable for further development.


Asunto(s)
Descubrimiento de Drogas/métodos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Cristalografía por Rayos X , Inhibidores Enzimáticos/uso terapéutico , Humanos , Unión Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA