Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nat Commun ; 15(1): 5225, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890272

RESUMEN

Economic productivity depends on reliable access to electricity, but the extreme shortage events of variable wind-solar systems may be strongly affected by climate change. Here, hourly reanalysis climatological data are leveraged to examine historical trends in defined extreme shortage events worldwide. We find uptrends in extreme shortage events regardless of their frequency, duration, and intensity since 1980. For instance, duration of extreme low-reliability events worldwide has increased by 4.1 hours (0.392 hours per year on average) between 1980-2000 and 2001-2022. However, such ascending trends are unevenly distributed worldwide, with a greater variability in low- and middle-latitude developing countries. This uptrend in extreme shortage events is driven by extremely low wind speed and solar radiation, particularly compound wind and solar drought, which however are strongly disproportionated. Only average 12.5% change in compound extremely low wind speed and solar radiation events may give rise to over 30% variability in extreme shortage events, despite a mere average 1.0% change in average wind speed and solar radiation. Our findings underline that wind-solar systems will probably suffer from weakened power security if such uptrends persist in a warmer future.

2.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38569031

RESUMEN

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

4.
Natl Sci Rev ; 10(12): nwad254, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38021166

RESUMEN

Limiting climate change to 1.5°C and achieving net-zero emissions would entail substantial carbon dioxide removal (CDR) from the atmosphere by the mid-century, but how much CDR is needed at country level over time is unclear. The purpose of this paper is to provide a detailed description of when and how much CDR is required at country level in order to achieve 1.5°C and how much CDR countries can carry out domestically. We allocate global CDR pathways among 170 countries according to 6 equity principles and assess these allocations with respect to countries' biophysical and geophysical capacity to deploy CDR. Allocating global CDR to countries based on these principles suggests that CDR will, on average, represent ∼4% of nations' total emissions in 2030, rising to ∼17% in 2040. Moreover, equitable allocations of CDR, in many cases, exceed implied land and carbon storage capacities. We estimate ∼15% of countries (25) would have insufficient land to contribute an equitable share of global CDR, and ∼40% of countries (71) would have insufficient geological storage capacity. Unless more diverse CDR technologies are developed, the mismatch between CDR liabilities and land-based CDR capacities will lead to global demand for six GtCO2 carbon credits from 2020 to 2050. This demonstrates an imperative demand for international carbon trading of CDR.

5.
Nature ; 621(7980): 760-766, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648863

RESUMEN

California has experienced enhanced extreme wildfire behaviour in recent years1-3, leading to substantial loss of life and property4,5. Some portion of the change in wildfire behaviour is attributable to anthropogenic climate warming, but formally quantifying this contribution is difficult because of numerous confounding factors6,7 and because wildfires are below the grid scale of global climate models. Here we use machine learning to quantify empirical relationships between temperature (as well as the influence of temperature on aridity) and the risk of extreme daily wildfire growth (>10,000 acres) in California and find that the influence of temperature on the risk is primarily mediated through its influence on fuel moisture. We use the uncovered relationships to estimate the changes in extreme daily wildfire growth risk under anthropogenic warming by subjecting historical fires from 2003 to 2020 to differing background climatological temperatures and aridity conditions. We find that the influence of anthropogenic warming on the risk of extreme daily wildfire growth varies appreciably on a fire-by-fire and day-by-day basis, depending on whether or not climate warming pushes conditions over certain thresholds of aridity, such as 1.5 kPa of vapour-pressure deficit and 10% dead fuel moisture. So far, anthropogenic warming has enhanced the aggregate expected frequency of extreme daily wildfire growth by 25% (5-95 range of 14-36%), on average, relative to preindustrial conditions. But for some fires, there was approximately no change, and for other fires, the enhancement has been as much as 461%. When historical fires are subjected to a range of projected end-of-century conditions, the aggregate expected frequency of extreme daily wildfire growth events increases by 59% (5-95 range of 47-71%) under a low SSP1-2.6 emissions scenario compared with an increase of 172% (5-95 range of 156-188%) under a very high SSP5-8.5 emissions scenario, relative to preindustrial conditions.


Asunto(s)
Calentamiento Global , Temperatura , Incendios Forestales , California , Modelos Climáticos , Sequías/estadística & datos numéricos , Calentamiento Global/estadística & datos numéricos , Actividades Humanas , Humedad , Aprendizaje Automático , Medición de Riesgo , Incendios Forestales/estadística & datos numéricos , Humanos
6.
Nat Food ; 4(7): 585-595, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37474803

RESUMEN

Reducing food loss and waste (FLW) could lessen the environmental impacts of food systems and improve food security. However, rebound effects-whereby efficiency improvements cause price decreases and consumption increases-may offset some avoided FLW. Here we model rebounds in food consumption under a scenario of costless FLW reduction. We project that consumption rebound could offset 53-71% of avoided FLW. Such rebounds would imply similar percentage reductions in environmental benefits (carbon emissions, land use, water use) and improvements in food security benefits (increased calorie availability), highlighting a tension between these two objectives. Evidence from energy systems suggests that indirect effects not included in our analysis could further increase rebounds. However, costs of reducing FLW would reduce rebounds. Rebound effects are therefore important to consider in efforts aimed at reducing FLW.


Asunto(s)
Ambiente , Alimentos , Abastecimiento de Alimentos
7.
Sci Data ; 10(1): 374, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291162

RESUMEN

With the urgent need to implement the EU countries pledges and to monitor the effectiveness of Green Deal plan, Monitoring Reporting and Verification tools are needed to track how emissions are changing for all the sectors. Current official inventories only provide annual estimates of national CO2 emissions with a lag of 1+ year which do not capture the variations of emissions due to recent shocks including COVID lockdowns and economic rebounds, war in Ukraine. Here we present a near-real-time country-level dataset of daily fossil fuel and cement emissions from January 2019 through December 2021 for 27 EU countries and UK, which called Carbon Monitor Europe. The data are calculated separately for six sectors: power, industry, ground transportation, domestic aviation, international aviation and residential. Daily CO2 emissions are estimated from a large set of activity data compiled from different sources. The goal of this dataset is to improve the timeliness and temporal resolution of emissions for European countries, to inform the public and decision makers about current emissions changes in Europe.

8.
Sci Data ; 10(1): 217, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069166

RESUMEN

We constructed a frequently updated, near-real-time global power generation dataset: CarbonMonitor-Power since January, 2016 at national levels with near-global coverage and hourly-to-daily time resolution. The data presented here are collected from 37 countries across all continents for eight source groups, including three types of fossil sources (coal, gas, and oil), nuclear energy and four groups of renewable energy sources (solar energy, wind energy, hydro energy and other renewables including biomass, geothermal, etc.). The global near-real-time power dataset shows the dynamics of the global power system, including its hourly, daily, weekly and seasonal patterns as influenced by daily periodical activities, weekends, seasonal cycles, regular and irregular events (i.e., holidays) and extreme events (i.e., the COVID-19 pandemic). The CarbonMonitor-Power dataset reveals that the COVID-19 pandemic caused strong disruptions in some countries (i.e., China and India), leading to a temporary or long-lasting shift to low carbon intensity, while it had only little impact in some other countries (i.e., Australia). This dataset offers a large range of opportunities for power-related scientific research and policy-making.

9.
Science ; 379(6635): 912-917, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862792

RESUMEN

Extreme wildfires are becoming more common and increasingly affecting Earth's climate. Wildfires in boreal forests have attracted much less attention than those in tropical forests, although boreal forests are one of the most extensive biomes on Earth and are experiencing the fastest warming. We used a satellite-based atmospheric inversion system to monitor fire emissions in boreal forests. Wildfires are rapidly expanding into boreal forests with emerging warmer and drier fire seasons. Boreal fires, typically accounting for 10% of global fire carbon dioxide emissions, contributed 23% (0.48 billion metric tons of carbon) in 2021, by far the highest fraction since 2000. 2021 was an abnormal year because North American and Eurasian boreal forests synchronously experienced their greatest water deficit. Increasing numbers of extreme boreal fires and stronger climate-fire feedbacks challenge climate mitigation efforts.

11.
J Phys Chem A ; 127(11): 2489-2502, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36913655

RESUMEN

The optically pumped rare-gas metastable laser is capable of high-intensity lasing on a broad range of near-infrared transitions for excited-state rare gas atoms (Ar*, Kr*, Ne*, Xe*) diluted in flowing He. The lasing action is generated by photoexcitation of the metastable atom to an upper state, followed by collisional energy transfer with He to a neighboring state and lasing back to the metastable state. The metastables are generated in a high-efficiency electric discharge at pressures of ∼0.4 to 1 atm. The diode-pumped rare-gas laser (DPRGL) is a chemically inert analogue to diode-pumped alkali laser (DPAL) systems, with similar optical and power scaling characteristics for high-energy laser applications. We used a continuous-wave linear microplasma array in Ar/He mixtures to produce Ar(1s5) (Paschen notation) metastables at number densities exceeding 1013 cm-3. The gain medium was optically pumped by both a narrow-line 1 W titanium-sapphire laser and a 30 W diode laser. Tunable diode laser absorption and gain spectroscopy determined Ar(1s5) number densities and small-signal gains up to ∼2.5 cm-1. Continuous-wave lasing was observed using the diode pump laser. The results were analyzed with a steady-state kinetics model relating the gain and the Ar(1s5) number density.

13.
Sci Data ; 10(1): 69, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732516

RESUMEN

We present a near-real-time global gridded daily CO2 emissions dataset (GRACED) throughout 2021. GRACED provides gridded CO2 emissions at a 0.1° × 0.1° spatial resolution and 1-day temporal resolution from cement production and fossil fuel combustion over seven sectors, including industry, power, residential consumption, ground transportation, international aviation, domestic aviation, and international shipping. GRACED is prepared from the near-real-time daily national CO2 emissions estimates (Carbon Monitor), multi-source spatial activity data emissions and satellite NO2 data for time variations of those spatial activity data. GRACED provides the most timely overview of emissions distribution changes, which enables more accurate and timely identification of when and where fossil CO2 emissions have rebounded and decreased. Uncertainty analysis of GRACED gives a grid-level two-sigma uncertainty of value of ±19.9% in 2021, indicating the reliability of GRACED was not sacrificed for the sake of higher spatiotemporal resolution that GRACED provides. Continuing to update GRACED in a timely manner could help policymakers monitor energy and climate policies' effectiveness and make adjustments quickly.

14.
Science ; 379(6631): 457-461, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36730415

RESUMEN

Extreme wildfires threaten human lives, air quality, and ecosystems. Meteorology plays a vital role in wildfire behaviors, and the links between wildfires and climate have been widely studied. However, it is not fully clear how fire-weather feedback affects short-term wildfire variability, which undermines our ability to mitigate fire disasters. Here, we show the primacy of synoptic-scale feedback in driving extreme fires in Mediterranean and monsoon climate regimes in the West Coast of the United States and Southeastern Asia. We found that radiative effects of smoke aerosols can modify near-surface wind, air dryness, and rainfall and thus worsen air pollution by enhancing fire emissions and weakening dispersion. The intricate interactions among wildfires, smoke, and weather form a positive feedback loop that substantially increases air pollution exposure.

15.
Nat Plants ; 9(1): 45-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564631

RESUMEN

Net-zero greenhouse gas (GHG) emissions targets are driving interest in opportunities for biomass-based negative emissions and bioenergy, including from marine sources such as seaweed. Yet the biophysical and economic limits to farming seaweed at scales relevant to the global carbon budget have not been assessed in detail. We use coupled seaweed growth and technoeconomic models to estimate the costs of global seaweed production and related climate benefits, systematically testing the relative importance of model parameters. Under our most optimistic assumptions, sinking farmed seaweed to the deep sea to sequester a gigaton of CO2 per year costs as little as US$480 per tCO2 on average, while using farmed seaweed for products that avoid a gigaton of CO2-equivalent GHG emissions annually could return a profit of $50 per tCO2-eq. However, these costs depend on low farming costs, high seaweed yields, and assumptions that almost all carbon in seaweed is removed from the atmosphere (that is, competition between phytoplankton and seaweed is negligible) and that seaweed products can displace products with substantial embodied non-CO2 GHG emissions. Moreover, the gigaton-scale climate benefits we model would require farming very large areas (>90,000 km2)-a >30-fold increase in the area currently farmed. Our results therefore suggest that seaweed-based climate benefits may be feasible, but targeted research and demonstrations are needed to further reduce economic and biophysical uncertainties.


Asunto(s)
Cambio Climático , Algas Marinas , Dióxido de Carbono , Agricultura/métodos , Carbono
16.
Natl Sci Rev ; 9(12): nwac223, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36540615

RESUMEN

International efforts to avoid dangerous climate change have historically focused on reducing energy-related CO2 emissions from countries with either the largest economies (e.g. the EU and the USA) and/or the largest populations (e.g. China and India). However, in recent years, emissions have surged among a different and much less-examined group of countries, raising concerns that a next generation of high-emitting economies will obviate current mitigation targets. Here, we analyse the trends and drivers of emissions in each of the 59 countries where emissions in 2010-2018 grew faster than the global average (excluding China and India), project their emissions under a range of longer-term energy scenarios and estimate the costs of decarbonization pathways. Total emissions from these 'emerging emitters' reach as much as 7.5 GtCO2/year in the baseline 2.5° scenario-substantially greater than the emissions from these regions in previously published scenarios that would limit warming to 1.5°C or even 2°C. Such unanticipated emissions would in turn require non-emitting energy deployment from all sectors within these emerging emitters, and faster and deeper reductions in emissions from other countries to meet international climate goals. Moreover, the annual costs of keeping emissions at the low level are in many cases 0.2%-4.1% of countries' gross domestic production, pointing to potential trade-offs with poverty-reduction goals and/or the need for economic support and low-carbon technology transfer from historically high-emitting countries. Our results thus highlight the critical importance of ramping up mitigation efforts in countries that to this point have been largely ignored.

17.
Nat Commun ; 13(1): 5738, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180421

RESUMEN

Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning.


Asunto(s)
Contaminación del Aire , Gases de Efecto Invernadero , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , California , Carbono
18.
Sci Data ; 9(1): 533, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050332

RESUMEN

Building on near-real-time and spatially explicit estimates of daily carbon dioxide (CO2) emissions, here we present and analyze a new city-level dataset of fossil fuel and cement emissions, Carbon Monitor Cities, which provides daily estimates of emissions from January 2019 through December 2021 for 1500 cities in 46 countries, and disaggregates five sectors: power generation, residential (buildings), industry, ground transportation, and aviation. The goal of this dataset is to improve the timeliness and temporal resolution of city-level emission inventories and includes estimates for both functional urban areas and city administrative areas that are consistent with global and regional totals. Comparisons with other datasets (i.e. CEADs, MEIC, Vulcan, and CDP-ICLEI Track) were performed, and we estimate the overall annual uncertainty range to be ±21.7%. Carbon Monitor Cities is a near-real-time, city-level emission dataset that includes cities around the world, including the first estimates for many cities in low-income countries.

19.
Science ; 376(6593): 597-603, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35511968

RESUMEN

International trade separates consumption of goods from related environmental impacts, including greenhouse gas emissions from agriculture and land-use change (together referred to as "land-use emissions"). Through use of new emissions estimates and a multiregional input-output model, we evaluated land-use emissions embodied in global trade from 2004 to 2017. Annually, 27% of land-use emissions and 22% of agricultural land are related to agricultural products ultimately consumed in a different region from where they were produced. Roughly three-quarters of embodied emissions are from land-use change, with the largest transfers from lower-income countries such as Brazil, Indonesia, and Argentina to more industrialized regions such as Europe, the United States, and China. Mitigation of global land-use emissions and sustainable development may thus depend on improving the transparency of supply chains.


Asunto(s)
Comercio , Gases de Efecto Invernadero , Agricultura , China , Europa (Continente) , Internacionalidad
20.
Nat Rev Earth Environ ; 3(4): 217-219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340723

RESUMEN

Following record-level declines in 2020, near-real-time data indicate that global CO2 emissions rebounded by 4.8% in 2021, reaching 34.9 GtCO2. These 2021 emissions consumed 8.7% of the remaining carbon budget for limiting anthropogenic warming to 1.5 °C, which if current trajectories continue, might be used up in 9.5 years at 67% likelihood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA