Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Elife ; 122023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867045

RESUMEN

During early vertebrate development, signals from a special region of the embryo, the organizer, can redirect the fate of non-neural ectoderm cells to form a complete, patterned nervous system. This is called neural induction and has generally been imagined as a single signalling event, causing a switch of fate. Here, we undertake a comprehensive analysis, in very fine time course, of the events following exposure of competent ectoderm of the chick to the organizer (the tip of the primitive streak, Hensen's node). Using transcriptomics and epigenomics we generate a gene regulatory network comprising 175 transcriptional regulators and 5614 predicted interactions between them, with fine temporal dynamics from initial exposure to the signals to expression of mature neural plate markers. Using in situ hybridization, single-cell RNA-sequencing, and reporter assays, we show that the gene regulatory hierarchy of responses to a grafted organizer closely resembles the events of normal neural plate development. The study is accompanied by an extensive resource, including information about conservation of the predicted enhancers in other vertebrates.


Asunto(s)
Redes Reguladoras de Genes , Sistema Nervioso , Animales , Sistema Nervioso/metabolismo , Pollos , Desarrollo Embrionario , Organizadores Embrionarios , Vertebrados
2.
Open Biol ; 10(2): 190299, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32102607

RESUMEN

The early stages of development of the chick embryo, leading to primitive streak formation (the start of gastrulation), have received renewed attention recently, especially for studies of the mechanisms of large-scale cell movements and those that position the primitive streak in the radial blastodisc. Over the long history of chick embryology, the terminology used to define different regions has been changing, making it difficult to relate studies to each other. To resolve this objectively requires precise definitions of the regions based on anatomical and functional criteria, along with a systematic molecular map that can be compared directly to the functional anatomy. Here, we undertake these tasks. We describe the characteristic cell morphologies (using scanning electron microscopy and immunocytochemistry for cell polarity markers) in different regions and at successive stages. RNAseq was performed for 12 regions of the blastodisc, from which a set of putative regional markers was selected. These were studied in detail by in situ hybridization. Together this provides a comprehensive resource allowing the community to define the regions unambiguously and objectively. In addition to helping with future experimental design and interpretation, this resource will also be useful for evolutionary comparisons between different vertebrate species.


Asunto(s)
Biomarcadores/metabolismo , Perfilación de la Expresión Génica/veterinaria , Redes Reguladoras de Genes , Línea Primitiva/anatomía & histología , Animales , Polaridad Celular , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Microscopía de Fuerza Atómica , Línea Primitiva/crecimiento & desarrollo , Línea Primitiva/metabolismo , Análisis de Secuencia de ARN
3.
Dev Biol ; 421(2): 161-170, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27919666

RESUMEN

Hensen's node is the "organizer" of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Calreticulina/metabolismo , Inducción Embrionaria , Tejido Nervioso/embriología , Tejido Nervioso/metabolismo , Organizadores Embrionarios/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Calnexina/metabolismo , Pollos , Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Placa Neural/embriología , Placa Neural/metabolismo , Transducción de Señal , Solubilidad
4.
Stem Cell Res ; 14(1): 54-67, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25514344

RESUMEN

Pluripotent Embryonic Stem cell (ESC) lines can be derived from a variety of sources. Mouse lines derived from the early blastocyst and from primordial germ cells (PGCs) can contribute to all somatic lineages and to the germ line, whereas cells from slightly later embryos (EpiSC) no longer contribute to the germ line. In chick, pluripotent ESCs can be obtained from PGCs and from early blastoderms. Established PGC lines and freshly isolated blastodermal cells (cBC) can contribute to both germinal and somatic lineages but established lines from the former (cESC) can only produce somatic cell types. For this reason, cESCs are often considered to be equivalent to mouse EpiSC. To define these cell types more rigorously, we have performed comparative microarray analysis to describe a transcriptomic profile specific for each cell type. This is validated by real time RT-PCR and in situ hybridisation. We find that both cES and cBC cells express classic pluripotency-related genes (including cPOUV/OCT4, NANOG, SOX2/3, KLF2 and SALL4), whereas expression of DAZL, DND1, DDX4 and PIWIL1 defines a molecular signature for germ cells. Surprisingly, contrary to the prevailing view, our results also suggest that cES cells resemble mouse ES cells more closely than mouse EpiSC.


Asunto(s)
Blastocisto/metabolismo , Células Madre Embrionarias/metabolismo , Perfilación de la Expresión Génica , Células Germinativas/metabolismo , Animales , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Blastocisto/citología , Células Cultivadas , Pollos , Análisis por Conglomerados , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Células Germinativas/citología , Hibridación in Situ , Ratones , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Análisis de Componente Principal , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Science ; 343(6172): 791-795, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24407478

RESUMEN

The formation of body segments (somites) in vertebrate embryos is accompanied by molecular oscillations (segmentation clock). Interaction of this oscillator with a wave traveling along the body axis (the clock-and-wavefront model) is generally believed to control somite number, size, and axial identity. Here we show that a clock-and-wavefront mechanism is unnecessary for somite formation. Non-somite mesoderm treated with Noggin generates many somites that form simultaneously, without cyclic expression of Notch-pathway genes, yet have normal size, shape, and fate. These somites have axial identity: The Hox code is fixed independently of somite fate. However, these somites are not subdivided into rostral and caudal halves, which is necessary for neural segmentation. We propose that somites are self-organizing structures whose size and shape is controlled by local cell-cell interactions.


Asunto(s)
Relojes Circadianos/fisiología , Somitos/crecimiento & desarrollo , Animales , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas CLOCK/genética , Proteínas Portadoras/farmacología , Comunicación Celular , Relojes Circadianos/efectos de los fármacos , Relojes Circadianos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Redes y Vías Metabólicas , Codorniz , Receptores Notch/metabolismo , Somitos/citología , Somitos/efectos de los fármacos
6.
Nat Commun ; 4: 1837, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23673622

RESUMEN

Calcium fluxes have been implicated in the specification of the vertebrate embryonic nervous system for some time, but how these fluxes are regulated and how they relate to the rest of the neural induction cascade is unknown. Here we describe Calfacilitin, a transmembrane calcium channel facilitator that increases calcium flux by generating a larger window current and slowing inactivation of the L-type CaV1.2 channel. Calfacilitin binds to this channel and is co-expressed with it in the embryo. Regulation of intracellular calcium by Calfacilitin is required for expression of the neural plate specifiers Geminin and Sox2 and for neural plate formation. Loss-of-function of Calfacilitin can be rescued by ionomycin, which increases intracellular calcium. Our results elucidate the role of calcium fluxes in early neural development and uncover a new factor in the modulation of calcium signalling.


Asunto(s)
Canales de Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Placa Neural/embriología , Placa Neural/metabolismo , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Embrión de Pollo , Geminina/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Células HEK293 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Morfolinos/farmacología , Placa Neural/efectos de los fármacos , Codorniz
7.
Dev Biol ; 327(2): 478-86, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19162002

RESUMEN

In Xenopus, the animal cap is very sensitive to BMP antagonists, which result in neuralization. In chick, however, only cells at the border of the neural plate can be neuralized by BMP inhibition. Here we compare the two systems. BMP antagonists can induce neural plate border markers in both ventral Xenopus epidermis and non-neural chick epiblast. However, BMP antagonism can only neuralize ectodermal cells when the BMP-inhibited cells form a continuous trail connecting them to the neural plate or its border, suggesting that homeogenetic neuralizing factors can only travel between BMP-inhibited cells. Xenopus animal cap explants contain cells fated to contribute to the neural plate border and even to the anterior neural plate, explaining why they are so easily neuralized by BMP-inhibition. Furthermore, chick explants isolated from embryonic epiblast behave like Xenopus animal caps and express border markers. We propose that the animal cap assay in Xenopus and explant assays in the chick are unsuitable for studying instructive signals in neural induction.


Asunto(s)
Biomarcadores/metabolismo , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Comunicación Celular/fisiología , Inducción Embrionaria/fisiología , Placa Neural/fisiología , Trasplantes , Xenopus laevis , Animales , Bioensayo/métodos , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Embrión de Pollo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa Neural/citología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/anatomía & histología , Xenopus laevis/embriología
8.
Mech Dev ; 125(5-6): 421-31, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18359614

RESUMEN

Neural induction is widely believed to be a direct consequence of inhibition of BMP pathways. Because of conflicting results and interpretations, we have re-examined this issue in Xenopus and chick embryos using the powerful and general TGFbeta inhibitor, Smad7, which inhibits both Smad1- (BMP) and Smad2- (Nodal/Activin) mediated pathways. We confirm that Smad7 efficiently inhibits phosphorylation of Smad1 and Smad2. Surprisingly, however, over-expression of Smad7 in Xenopus ventral epidermis induces expression of the dorsal mesodermal markers Chordin and Brachyury. Neural markers are induced, but in a non-cell-autonomous manner and only when Chordin and Brachyury are also induced. Simultaneous inhibition of Smad1 and Smad2 by different approaches does not account for all Smad7 effects, indicating that Smad7 has activities other than inhibition of the TGFbeta pathway. We provide evidence that these effects are independent of Wnt, FGF, Hedgehog and retinoid signalling. We also show that these effects are due to elements outside of the MH2 domain of Smad7. Together, these results indicate that BMP inhibition is not sufficient for neural induction even when Nodal/Activin is also blocked, and that Smad7 activity is considerably more complex than had previously been assumed. We suggest that experiments relying on Smad7 as an inhibitor of TGFbeta-pathways should be interpreted with considerable caution.


Asunto(s)
Mesodermo/metabolismo , Neuronas/metabolismo , Proteína smad7/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Animales , Embrión de Pollo/metabolismo , Biología Evolutiva , Modelos Biológicos , Oocitos/metabolismo , Estructura Terciaria de Proteína , Transducción de Señal , Proteína smad6/metabolismo , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Tretinoina/metabolismo , Proteínas de Xenopus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA