Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 641-644, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38845723

RESUMEN

4,4'-(Disulfanedi-yl)dipyridinium chloride triiodide, C10H10N2S2 2+·Cl-·I3 -, (1) was synthesized by reaction of 4,4'-di-pyridyl-disulfide with ICl in a 1:1 molar ratio in di-chloro-methane solution. The structural characterization of 1 by SC-XRD analysis was supported by elemental analysis, FT-IR, and FT-Raman spectroscopic measurements.

2.
Molecules ; 26(5)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673411

RESUMEN

This study investigates the coordination chemistry of the tetradentate pyridine-containing 12-membered macrocycles L1-L3 towards Platinum Group metal ions PdII, PtII, and RhIII. The reactions between the chloride salts of these metal ions and the three ligands in MeCN/H2O or MeOH/H2O (1:1 v/v) are shown, and the isolated solid compounds are characterized, where possible, by mass spectroscopy and 1H- and 13C-NMR spectroscopic measurements. Structural characterization of the 1:1 metal-to-ligand complexes [Pd(L1)Cl]2[Pd2Cl6], [Pt(L1)Cl](BF4), [Rh(L1)Cl2](PF6), and [Rh(L3)Cl2](BF4)·MeCN shows the coordinated macrocyclic ligands adopting a folded conformation, and occupying four coordination sites of a distorted square-based pyramidal and octahedral coordination environment for the PdII/PtII, and RhIII complexes, respectively. The remaining coordination site(s) are occupied by chlorido ligands. The reaction of L3 with PtCl2 in MeCN/H2O gave by serendipity the complex [Pt(L3)(m-1,3-MeCONH)PtCl(MeCN)](BF4)2·H2O, in which two metal centers are bridged by an amidate ligand at a Pt1-Pt2 distance of 2.5798(3) Å and feature one square-planar and one octahedral coordination environment. Density Functional Theory (DFT) calculations, which utilize the broken symmetry approach (DFT-BS), indicate a singlet d8-d8 PtII-PtII ground-state nature for this compound, rather than the alleged d9-d7 PtI-PtIII mixed-valence character reported for related dinuclear Pt-complexes.


Asunto(s)
Complejos de Coordinación/química , Compuestos Macrocíclicos/química , Paladio/química , Platino (Metal)/química , Piridinas/química , Rodio/química , Cristalografía por Rayos X , Teoría Funcional de la Densidad , Ligandos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Modelos Moleculares , Estructura Molecular
3.
Chem Commun (Camb) ; 50(96): 15259-62, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25347004

RESUMEN

The fluorescent ligand (L) based on the N2S2 pyridinophane macrocycle and the 7-nitrobenzo[1,2,5]oxadiazole (NBD) fluorogenic fragment has been synthesized to coordinate Pd(II) ions. Loaded on dye-doped silica nanoparticles, L can be used as a ratiometric fluorescent chemosensor for Pd(II) in water with high selectivity toward other metal ions including the platinum group ones.

4.
J Phys Chem A ; 117(18): 3798-808, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23586441

RESUMEN

Synthesis and characterization of a new macrocyclic compound, composed by a triethylentetraamine chain linking the 4 and 5 positions of an acridine moiety, are reported. The molecule, devised as a fluorescent chemosensor for anions, has revealed an intriguing pH-dependent spectroscopic behavior, whose features are the specific object of this article. Ligand protonation in aqueous solution has been analyzed by means of potentiometric, (1)H NMR, UV-vis, and fluorescence emission measurements. The molecule binds up to four protons in the pH range 2-11. Protonation takes place on the aliphatic tetraamine chain, while the acridine nitrogen does not participate to proton binding even at very low pH. Differently from acridine, the UV-vis spectra are almost unaffected by the pH. On the opposite, the emission spectra are strongly pH-dependent. In fact, at low pH values, the spectra show a blue-shifted emission, resembling that of unprotonated acridine, while at slightly acidic and alkaline pH the fluorescence features a red-shifted band similar to that of acridinium cation. This unusual behavior occurs in the mono-, bi-, and triprotonated forms of the compound and is interpreted as due to an excited state proton transfer from an aliphatic ammonium group adjacent to the acridine moiety to the acridine nitrogen. In the fully protonated state, this process is prevented owing to unfavorable molecular arrangements mainly determined by electrostatic repulsions. This interpretation is supported by quantum mechanical calculations as well as molecular dynamics simulations.

5.
Talanta ; 85(1): 687-93, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21645759

RESUMEN

A novel flow injection analysis (FIA) system based on liquid-liquid microextraction and fluorimetric determination was developed for the determination of traces of the Zn(2+) ion using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a sensitive and selective fluorimetric sensor, with λ(ex)=373 nm and λ(em)=530 nm, and hexanol as the extracting organic solvent. In the designed FIA system, the phase separation takes place via gravitation forces in the absence of any segmenter. The influence of pH and ionic strength of the solution, amount of ligand, nature of counter ion, volume of organic solvent, extraction time and coil length was investigated. Under optimized experimental conditions, the calibration curve found to be liner over a concentration range of 0.025-4.53 µg mL(-1) (R(2)=0.9951) with a limit of detection of 2.3 ng mL(-1). The enrichment factor was 45 and relative standard deviation for 7 replicate determinations was 2.43%. The method is very fast and uses low levels of organic solvents. The proposed method was applied successfully to the determination of zinc(II) in human hair, human serum and two inorganic sludge samples.


Asunto(s)
Análisis de Inyección de Flujo/métodos , Fluorescencia , Espectrofotometría Atómica/métodos , Zinc/análisis , Compuestos Aza , Hidrocarburos Aromáticos con Puentes , Cabello/química , Humanos , Métodos , Suero/química , Aguas del Alcantarillado/química , Zinc/aislamiento & purificación
6.
Chemistry ; 16(3): 919-30, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-19943285

RESUMEN

In spite of the fact that cadmium(II) has been recognized as a highly toxic element and that excessive exposure to this metal ion has been reported to have many adverse effects on human health, very few selective and specific fluorescent probes are available for imaging Cd(2+) in living cells. Herein, we report the spectroscopic and photochemical characterization of 5-(5-chloro-8-hydroxyquinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a fluorescent sensor for the selective imaging of Cd(2+) in living cells. In particular, the response of L to Cd(2+) was first assessed in aqueous solutions, sodium dodecyl sulfate micelles, and liposomes, and subsequently in living cells by fluorescence microscopy techniques. Cytofluorimetric analyses of leukemic HL-60 cells loaded with L also allowed evaluation of the toxicity of the probe and the selective analysis of its intracellular fluorescence in the presence of Cd(2+). Furthermore, the 1:1 complex species [Cd(L)H(2)O](2+) responsible for the OFF-ON chelation enhancement of fluorescence (CHEF) effect on L was structurally characterized; time-dependent DFT calculations allowed the prediction of theoretical excitations, which were comparable with the experimental ones.


Asunto(s)
Cadmio/química , Colorantes Fluorescentes/química , Oxiquinolina/química , Animales , Células COS , Cadmio/toxicidad , Línea Celular , Quelantes/química , Chlorocebus aethiops , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Cristalografía por Rayos X , Citometría de Flujo , Células HL-60 , Humanos , Liposomas/química , Micelas , Microscopía Fluorescente , Conformación Molecular , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Termodinámica
7.
Inorg Chem ; 47(18): 8391-404, 2008 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-18714986

RESUMEN

Two new mixed aza-thia crowns 5-aza-2,8-dithia[9]-(2,9)-1,10-phenanthrolinophane (L(4)) and 2,8-diaza-5-thia[9]-(2,9)-1,10-phenanthrolinophane (L(7)) have been synthesized and characterized. The coordination behavior of L(4) and L(7) toward the metal ions Cu(II), Zn(II), Pb(II), Cd(II), Hg(II), and Ag(I) was studied in aqueous solution by potentiometric methods, in CD3CN/D2O 4:1 (v/v) by (1)H NMR titrations and in the solid state. The data obtained were compared with those available for the coordination behavior toward the same metal ions of structurally analogous mixed donor macrocyclic ligands L(1)-L(3), L(5), L(6): all these contain a phenanthroline subunit but have only S/O/N(aromatic) donor groups in the remaining portion of the ring and are, therefore, less water-soluble than L(4) and L(7). The complexes [Cd(NO3)2(L(5))], [Pb(L(7))](ClO4)2 x 1/2MeCN, [Pb(L(4))](ClO4)2 x MeCN, and [Cu(L(7))](ClO4)2 x 3/2MeNO2 were characterized by X-ray crystallography. The efficacy of L(1)-L(7) in competitive liquid-liquid metal ion extraction of Cu(II), Zn(II), Cd(II), Pb(II), Ag(I), and Hg(II) was assessed. In the absence of Hg(II), a clear extraction selectivity for Ag(I) was observed in all systems investigated.

8.
Inorg Chem ; 46(11): 4548-59, 2007 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-17439209

RESUMEN

Two new fluorescent chemosensors for metal ions have been synthesized and characterized, and their photophysical properties have been explored; they are the macrocycles 5-(2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L5) and 5-(5-chloro-8-hydroxyquinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L6). Both systems have a pyridyl-thioether-containing 12-membered macrocycle as a binding site. The coordination properties of these two ligands toward CuII, ZnII, CdII, HgII, and PbII have been studied in MeCN/H2O (1:1 v/v) and MeCN solutions and in the solid state. The stoichiometry of the species formed at 25 degrees C have been determined from absorption, fluorescence, and potentiometric titrations. The complexes [CuL5](ClO4)(2).1/2MeCN, [ZnL5(H2O)](ClO4)2, [HgL5(MeCN)](ClO4)2, [PbL5(ClO4)2], [Cu3(5-Cl-8-HDQH-1)(L6H-1)2](ClO4)(3).7.5H2O (HDQ=hydroxyquinoline), and [Cu(L6)2](BF4)(2).2MeNO2 have also been characterized by X-ray crystallography. A specific CHEF-type response of L5 and L6 to the presence of ZnII and CdII, respectively, has been observed at about pH 7.0 in MeCN/H2O (1:1 v/v) solutions.

9.
Dalton Trans ; (17): 2771-9, 2004 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-15514765

RESUMEN

The coordination chemistry of the new pyridine-based, N2S2-donating 12-membered macrocycle 2,8-dithia-5-aza-2,6-pyridinophane (L1) towards Cu(II), Zn(II), Cd(II), Hg(II), and Pb(II) has been investigated both in aqueous solution and in the solid state. The protonation constants for L1 and stability constants with the aforementioned metal ions have been determined potentiometrically and compared with those of ligand L2, which contains a N-aminopropyl side arm. The measured values show that Hg(II) in water has the highest affinity for both ligands followed by Cu(II), Cd(II), Pb(II), and Zn(II). For each metal ion considered, 1:1 complexes with L1 have also been isolated in the solid state, those of Cu(II) and Zn(II) having also been characterised by X-ray crystallography. In both complexes L1 adopts a folded conformation and the coordination environments around the two metal centres are very similar: four positions of a distorted octahedral coordination sphere are occupied by the donor atoms of the macrocyclic ligand, and the two mutually cis-positions unoccupied by L1 accommodate monodentate NO3- ligands. The macrocycle L1 has then been functionalised with different fluorogenic subunits. In particular, the N-dansylamidopropyl (L3), N-(9-anthracenyl)methyl (L4), and N-(8-hydroxy-2-quinolinyl)methyl (L5) pendant arm derivatives of L1 have been synthesised and their optical response to the above mentioned metal ions investigated in MeCN/H2O (4:1 v/v) solutions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA