Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Channels (Austin) ; 18(1): 2338782, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38691022

RESUMEN

L-type calcium channels are essential for the excitation-contraction coupling in cardiac muscle. The CaV1.2 channel is the most predominant isoform in the ventricle which consists of a multi-subunit membrane complex that includes the CaV1.2 pore-forming subunit and auxiliary subunits like CaVα2δ and CaVß2b. The CaV1.2 channel's C-terminus undergoes proteolytic cleavage, and the distal C-terminal domain (DCtermD) associates with the channel core through two domains known as proximal and distal C-terminal regulatory domain (PCRD and DCRD, respectively). The interaction between the DCtermD and the remaining C-terminus reduces the channel activity and modifies voltage- and calcium-dependent inactivation mechanisms, leading to an autoinhibitory effect. In this study, we investigate how the interaction between DCRD and PCRD affects the inactivation processes and CaV1.2 activity. We expressed a 14-amino acid peptide miming the DCRD-PCRD interaction sequence in both heterologous systems and cardiomyocytes. Our results show that overexpression of this small peptide can displace the DCtermD and replicate the effects of the entire DCtermD on voltage-dependent inactivation and channel inhibition. However, the effect on calcium-dependent inactivation requires the full DCtermD and is prevented by overexpression of calmodulin. In conclusion, our results suggest that the interaction between DCRD and PCRD is sufficient to bring about the current inhibition and alter the voltage-dependent inactivation, possibly in an allosteric manner. Additionally, our data suggest that the DCtermD competitively modifies the calcium-dependent mechanism. The identified peptide sequence provides a valuable tool for further dissecting the molecular mechanisms that regulate L-type calcium channels' basal activity in cardiomyocytes.


Asunto(s)
Canales de Calcio Tipo L , Miocitos Cardíacos , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/química , Animales , Miocitos Cardíacos/metabolismo , Humanos , Células HEK293 , Ratas , Dominios Proteicos
2.
Sci Adv ; 7(46): eabe5469, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767445

RESUMEN

Programmed cell death is regulated by the balance between activating and inhibitory signals. Here, we have identified RECS1 (responsive to centrifugal force and shear stress 1) [also known as TMBIM1 (transmembrane BAX inhibitor motif containing 1)] as a proapoptotic member of the TMBIM family. In contrast to other proteins of the TMBIM family, RECS1 expression induces cell death through the canonical mitochondrial apoptosis pathway. Unbiased screening indicated that RECS1 sensitizes cells to lysosomal perturbations. RECS1 localizes to lysosomes, where it regulates their acidification and calcium content, triggering lysosomal membrane permeabilization. Structural modeling and electrophysiological studies indicated that RECS1 is a pH-regulated calcium channel, an activity that is essential to trigger cell death. RECS1 also sensitizes whole animals to stress in vivo in Drosophila melanogaster and zebrafish models. Our results unveil an unanticipated function for RECS1 as a proapoptotic component of the TMBIM family that ignites cell death programs at lysosomes.

3.
Proc Natl Acad Sci U S A ; 108(51): 20556-61, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22143771

RESUMEN

The Na(+)/K(+) pump is a nearly ubiquitous membrane protein in animal cells that uses the free energy of ATP hydrolysis to alternatively export 3Na(+) from the cell and import 2K(+) per cycle. This exchange of ions produces a steady-state outwardly directed current, which is proportional in magnitude to the turnover rate. Under certain ionic conditions, a sudden voltage jump generates temporally distinct transient currents mediated by the Na(+)/K(+) pump that represent the kinetics of extracellular Na(+) binding/release and Na(+) occlusion/deocclusion transitions. For many years, these events have escaped a proper thermodynamic treatment due to the relatively small electrical signal. Here, taking the advantages offered by the large diameter of the axons from the squid Dosidicus gigas, we have been able to separate the kinetic components of the transient currents in an extended temperature range and thus characterize the energetic landscape of the pump cycle and those transitions associated with the extracellular release of the first Na(+) from the deeply occluded state. Occlusion/deocclusion transition involves large changes in enthalpy and entropy as the ion is exposed to the external milieu for release. Binding/unbinding is substantially less costly, yet larger than predicted for the energetic cost of an ion diffusing through a permeation pathway, which suggests that ion binding/unbinding must involve amino acid side-chain rearrangements at the site.


Asunto(s)
Axones/fisiología , Sodio/química , Adenosina Trifosfato/química , Animales , Decapodiformes , Difusión , Electrofisiología/métodos , Hidrólisis , Iones , Cinética , Unión Proteica , ATPasa Intercambiadora de Sodio-Potasio/química , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA