RESUMEN
Research on liver-related conditions requires a robust and efficient method to purify viable hepatocytes, lymphocytes and all other liver resident cells, such as Kupffer or liver sinusoidal endothelial cells. Here we describe a novel purification method using liver enzymatic digestion, followed by a downstream optimized purification. Using this enzymatic digestion protocol, the resident liver cells as well as viable hepatocytes could be captured, compared to the classical mechanical liver disruption method. Moreover, single-cell RNA-sequencing demonstrated higher quality lymphocyte data in downstream analyses after the liver enzymatic digestion, allowing for studying of immunological responses or changes. In order to also understand the peripheral immune landscape, a protocol for lymphocyte purification from mouse systemic whole blood was optimized, allowing for efficient removal of red blood cells. The combination of microbeads and mRNA blockers allowed for a clean blood sample, enabling robust single-cell RNA-sequencing data. These two protocols for blood and liver provide important new methodologies for liver-related studies such as NASH, hepatitis virus infections or cancer research but also for immunology where high-quality cells are indispensable for further downstream assays.
Asunto(s)
Leucocitos , Hígado , Animales , Ratones , Hígado/inmunología , Leucocitos/inmunología , Hepatocitos/inmunología , Separación Celular/métodos , Análisis de la Célula Individual/métodos , Ratones Endogámicos C57BL , Masculino , Linfocitos/inmunología , Linfocitos/citologíaRESUMEN
Background: Urinary extracellular vesicles (uEVs) can be released by different cell types facing the urogenital tract and are involved in cellular trafficking, differentiation and survival. UEVs can be easily detected in urine and provide pathophysiological information "in vivo" without the need of a biopsy. Based on these premises, we hypothesized that uEVs proteomic profile may serve as a valuable tool in the differential characterization between Essential Hypertension (EH) and primary aldosteronism (PA). Methods: Patients with essential hypertension (EH) and PA were enrolled in the study (EH= 12, PA=24: 11 Bilateral Primary Aldosteronism subtype (BPA) and 13 Aldosterone Producing Adenoma (APA)). Clinical and biochemical parameters were available for all the subjects. UEVs were isolated from urine by ultracentrifugation and analysed by Transmission Electron Microscopy (TEM) and nanotrack particle analysis (NTA). UEVs protein content was investigated through an untargeted MS-based approach. Statistical and network analysis was performed to identify potential candidates for the identification and classification of PA. Results: MS analysis provided more than 300 protein identifications. Exosomal markers CD9 and CD63 were detected in all samples. Several molecules characterizing EH vs PA patients as well as BPA and APA subtypes were identified after statistical elaboration and filtering of the results. In particular, some key proteins involved in water reabsorption mechanisms, such as AQP1 and AQP2, were among the best candidates for discriminating EH vs PA, as well as A1AG1 (AGP1). Conclusion: Through this proteomic approach, we identified uEVs molecular indicators that can improve PA characterization and help in the gain of insights of the pathophysiological features of this disease. In particular, PA was characterized by a reduction of AQP1 and AQP2 expression as compared with EH.
Asunto(s)
Vesículas Extracelulares , Hiperaldosteronismo , Humanos , Acuaporina 2 , Proteómica , Hipertensión Esencial , Hiperaldosteronismo/diagnósticoRESUMEN
Urinary extracellular vesicles (UEV) mainly derive from cells of the urogenital tract and their cargo (proteins, nucleic acids, lipids, etc.) reflects their cells of origin. Na chloride cotransporter (NCC) is expressed at the kidney level in the distal convoluted tubule, is involved in salt reabsorption, and is the target of the diuretic thiazides. NCC protein has been recognized and quantified in UEV in previous studies; however, UEV NCC mRNA has never been studied. This study aimed to identify and analyze NCC mRNA levels in primary aldosteronism (PA). The rationale for this investigation stems from previous observations regarding NCC (protein) as a possible biomarker for the diagnosis of PA. To evaluate modulations in the expression of NCC, we analyzed NCC mRNA levels in UEV in PA and essential hypertensive (EH) patients under different conditions, that is, before and after saline infusion, anti-aldosterone pharmacological treatment, and adrenal surgery. NCC mRNA was measured by RT-qPCR in all the samples and was regulated by volume expansion. Its response to mineralocorticoid receptor antagonist was correlated with renin, and it was increased in PA patients after adrenalectomy. NCC mRNA is evaluable in UEV and it can provide insights into the pathophysiology of distal convolute tubule in different clinical conditions including PA.
Asunto(s)
Vesículas Extracelulares , Hipertensión , Humanos , Simportadores del Cloruro de Sodio/genética , Simportadores del Cloruro de Sodio/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/farmacología , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Hipertensión/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Sodio/metabolismo , Túbulos Renales DistalesRESUMEN
Objective: Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder caused by the 11ß-hydroxysteroid dehydrogenase type 2 (11ß-HSD2) enzyme deficiency, traditionally assessed by measuring either the urinary cortisol metabolites ratio (tetrahydrocortisol+allotetrahydrocortisol/tetrahydrocortisone, THF+5αTHF/THE) or the urinary cortisol/cortisone (F/E) ratio. Exosomal mRNA is an emerging diagnostic tool due to its stability in body fluids and its biological regulatory function. It is unknown whether urinary exosomal HSD11B2 mRNA is related to steroid ratio or the HSD11B2 662 C>G genotype (corresponding to a 221 A>G substitution) in patients with AME and essential hypertension (EH). Aim of the Study: To detect and quantify HSD11B2 mRNA from urinary exosomes in samples from family members affected by AME and EH, and to evaluate the relationship between exosomal HSD11B2 mRNA, steroid ratio, 662C>G genotype, and hypertension. Methods: In this observational case-control study, urinary steroid ratios and biochemical parameters were measured. Urinary exosomes were extracted from urine and exosomal HSD11B2 mRNA was quantified by Droplet Digital PCR (ddPCR). B2M (ß-2 microglobulin) gene was selected as the reference housekeeping gene. Results: Among family members affected by AME, exosomal urinary HSD11B2 mRNA expression was strictly related to genotypes. The two homozygous mutant probands showed the highest HSD11B2 mRNA levels (median 169, range 118-220 copies/µl) that progressively decreased in 221 AG heterozygous with hypertension (108, range 92-124 copies/µl), 221 AG heterozygous normotensives (23.35, range 8-38.7 copies/µl), and wild-type 221 AA subjects (5.5, range 4.5-14 copies/µl). Heterozygous hypertensive subjects had more HSD11B2 mRNA than heterozygous normotensive subjects. The F/E urinary ratio correlated with HSD11B2 mRNA copy number (p < 0.05); HSD11B2 mRNA strongly decreased while THF+5αTHF/THE increased in the two probands after therapy. In the AME family, HSD11B2 copy number correlated with both F/E and THF+5αTHF/THE ratios, whereas in EH patients, a high F/E ratio reflected a reduced HSD11B2 mRNA expression. Conclusions: HSD11B2 mRNA is detectable and quantifiable in urinary exosomes; its expression varies according to the 662 C>G genotype with the highest levels in homozygous mutant subjects. The HSD11B2 mRNA overexpression in AME could be due to a compensatory mechanism of the enzyme impairment. Exosomal mRNA is a useful tool to investigate HSD11B2 dysregulation in hypertension.
Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Exosomas/genética , Hipertensión/genética , Hipertensión/orina , ARN Mensajero/orina , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Femenino , Genotipo , Humanos , Hipertensión/diagnóstico , Masculino , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Mechanisms underlying hepatocellular carcinoma (HCC) development are largely unknown. The role of trace elements and proteins regulating metal ions homeostasis, i.e. metallothioneins (MTs), recently gained an increased interest. Object of the study was to investigate the role of promoter DNA methylation in MTs transcriptional regulation and the possible prognostic significance of serum trace elements in HCC. METHODS: Forty-nine HCC patients were enrolled and clinically characterized. Cu, Se, and Zn contents were measured by Inductively Coupled Plasma Mass Spectrometry in the serum and, for a subset of 27 patients, in HCC and homologous non-neoplastic liver (N) tissues. MT1G and MT1H gene expression in hepatic tissues was assessed by Real-Time RT-PCR and the specific promoter DNA methylation by Bisulfite-Amplicon Sequencing. RESULTS: Patients with Cu serum concentration above the 80th percentile had a significantly decreased survival rate (P < 0.001) with a marked increased hazard ratio for mortality (HR 6.88 with 95% CI 2.60-18.23, P < 0.001). Se and Zn levels were significantly lower in HCC as compared to N tissues (P < 0.0001). MT1G and MT1H gene expression was significantly down-regulated in HCC as compared to N tissues (P < 0.05). MTs promoter was hypermethylated in 9 out of the 19 HCC tissues showing MTs down-regulation and methylation levels of three specific CpGs paralleled to an increased mortality rate among the 23 patients analyzed (P = 0.015). CONCLUSIONS: MT1G and MT1H act as potential tumor suppressor genes regulated through promoter DNA methylation and, together with serum Cu concentrations, be related to survival rate in HCC.
RESUMEN
BACKGROUND: The liver hormone hepcidin regulates iron homoeostasis that is often altered in hepatocellular carcinoma (HCC). Epigenetic phenomena control gene expression through a dynamic fashion; therefore, considering the plasticity of both iron homoeostasis and epigenetic mechanisms and their role in liver carcinogenesis, we investigated whether hepcidin gene (HAMP) expression is modulated by DNA methylation, thus affecting iron status in human HCC. MATERIALS AND METHODS: Thirty-two patients affected by nonviral HCC were enrolled, and their main clinical and biochemical characteristics were obtained. Neoplastic and homologous non-neoplastic liver tissues were analysed for HAMP promoter DNA methylation, for HAMP gene expression and for iron content. An in vitro demethylation assay with a human hepatocarcinoma cell line was performed to evaluate the role of DNA methylation on HAMP transcriptional repression. RESULTS: Gene expression and DNA methylation analyses on tissues showed that HAMP was transcriptionally repressed in HCC tissues consensually with a promoter hypermethylation. Furthermore, patients with HCC had low serum hepcidin concentrations, and HCC tissues had relative iron depletion as compared to non-neoplastic liver tissues. The cell culture model showed the functional role of DNA hypermethylation by downregulating HAMP gene expression. Through a quantitative methylation analysis on HCC tissues, we then proved that methylation at definite CpG sites within consensus sequences for specific transcription factors is possibly the mechanism underlying HAMP repression. CONCLUSIONS: This study highlights a novel role for HAMP downregulation through DNA promoter hypermethylation and emphasises the significance of epigenetics in the regulation of iron metabolism in HCC.
Asunto(s)
Carcinoma Hepatocelular/metabolismo , Metilación de ADN/fisiología , Hepcidinas/metabolismo , Neoplasias Hepáticas/metabolismo , Regiones Promotoras Genéticas/fisiología , Anciano , Análisis de Varianza , Proteínas de Transporte de Catión/metabolismo , Regulación hacia Abajo/fisiología , Femenino , Expresión Génica/fisiología , Hepcidinas/genética , Humanos , Deficiencias de Hierro , Masculino , Proteínas de la Membrana/metabolismo , Serina Endopeptidasas/metabolismo , Transcripción Genética/fisiologíaRESUMEN
Colon cancer is one of the most frequent solid tumor and simultaneous diagnosis of primary colon cancer and liver metastases occurs in about one fourth of cases. The current knowledge on epigenetic signatures, especially those related to hydroxymethylation in primary cancer tissue, synchronous metastasis, and blood circulating cells is lacking. This study aimed to investigate both methylcytosine (mCyt) and hydroxymethylcytosine (hmCyt) status in the DNA of individual patients from colon cancer tissue, synchronous liver metastases, and in cancer-free colon and liver tissues and leukocytes. Patients undergoing curative surgery (n = 16) were enrolled and their laboratory and clinical history data collected. The contents of mCyt and hmCyt were determined by a liquid chromatography/mass spectrometry (LC/MS/MS) method in DNA extracted from primary colon cancer, synchronous hepatic metastatic tissues and homologous cancer-free tissues, i.e., colon and liver tissues as well as leukocytes. The mCyt and hmCyt levels were compared between cancerous and cancer-free tissues, and correlations between leukocytes and colon/liver tissues for both the mCyt and hmCyt levels were evaluated. The mCyt levels were similar in primary colon cancer and liver metastasis tissues (4.69 ± 0.37% vs. 4.77 ± 0.38%, respectively, p = 0.535), and both primary and metastatic tissues were hypomethylated compared to cancer-free colon (4.98 ± 0.26%). The difference in the mCyt content between cancerous and cancer-free colon tissues was significantly lower in primary colon cancer (p = 0.004), but not in liver metastasis (p = 0.148). The hmCyt content was similar in primary colon cancer compared to liver metastasis (0.035%, C.I. 0.024-0.052% versus 0.035%, C.I. 0.021-0.058%, respectively, p = 0.905) and markedly depleted compared to the cancer-free colon (0.081%, C.I. 0.055-0.119%) with a statistically significant difference (p < 0.05) for both comparisons. The mCyt levels showed a borderline correlation between leukocytes and colon cancer tissue (Pearson's correlation coefficient = 0.51, p = 0.052) while no correlations were detected for the hmCyt levels. In conclusion, primary colon cancer and synchronous liver metastasis tissues showed a similar epigenetic status but were significantly hypomethylated and hypohydroxymethylated as compared to homologous cancer-free colon tissues.
RESUMEN
The function of one-carbon metabolism is that of regulating the provision of methyl groups for biological methylation reactions including that of DNA and histone proteins. Methylation at specific sites into the DNA sequence and at histone tails are among the major epigenetic feature of mammalian genome for the regulation of gene expression. The enzymes within one-carbon metabolism are dependent from a number of vitamins or nutrients that serve either as co-factors or methyl acceptors or donors among which folate, vitamin B12, vitamin B6, betaine, choline and methionine have a major role. Several evidences show that there is a strict inter-relationship between one-carbon metabolism nutrients and epigenetic phenomena. Epigenetics is closely involved in gene transcriptional regulation through modifications super-imposed to the nucleotide sequence of DNA, such as DNA methylation, through chromatin remodeling systems that involves post-translational modifications of histones or through non-coding RNAs-based mechanisms. The epigenetic features of the genome are potentially modifiable by the action of several environmental factors among which nutrients cover a special place and interest considering their potential of influencing regulatory pathways at a molecular level by specific nutritional intervention and eventually influence disease prevention and outcomes. The present review will focus on the link between one-carbon nutrients and epigenetic phenomena based on the current knowledge from findings in cell culture, animal models and human studies.