RESUMEN
Alveolar-pleural fistulas (APF) are a clinical entity that represents a diagnostic and therapeutic challenge. OBJECTIVE: The objective of this work is to design a diagnostic algorithm for the anatomical detection of APF in patients who are not candidates for surgical treatment. METHOD: Prospective non-randomized study of 47 patients. Diagnostic procedures were performed: (a) prior to bronchoscopy: computed axial tomography (CT) and implantation of electronic pleural drainage system (EPD) and (b) endoscopic: endobronchial occlusion (EO) by balloon, selective endobronchial oxygen insufflation (OI) (2l) and selective bronchography (BS) (instillation of iodinated radiological contrast using continuous fluoroscopy). RESULTS: The sample was predominantly male (81%). The diagnostic methods revealed: (a) Determination of the anatomical location of APF by CT in 15/46 patients (31.9% of sample), and variations in the pattern (intermittent or continuous air leak) and quantification after drug administration sedatives using EPD, (b) endoscopic: anatomical determination of APF was achieved in 57.1, 81 and 63.4% respectively using EO, OI and BS. The combination of the diagnostic tests allowed us to determine the anatomical location of the APF in 91.5% of the sample. No complications were recorded in 85.1% of cases. CONCLUSIONS: The diagnosis of APF by flexible bronchoscopy is a useful method, with an adequate safety and efficacy profile. The proposed diagnostic algorithm includes the use of EPD and performing a CT scan. Regarding endoscopic diagnosis: in case of continuous air leak, the first option is OE; and if the leak is intermittent, we recommend endobronchial OI, with BS as a secondary option (respective sensitivity 81% vs 63.4% and complications 8.1% vs 7.3%).
RESUMEN
Introduction: There are no data on the association of type of pneumonia and long-term mortality by the type of pneumonia (COVID-19 or community-acquired pneumonia [CAP]) on long-term mortality after an adjustment for potential confounding variables. We aimed to assess the type of pneumonia and risk factors for long-term mortality in patients who were hospitalized in conventional ward and later discharged. Methods: Retrospective analysis of two prospective and multicentre cohorts of hospitalized patients with COVID-19 and CAP. The main outcome under study was 1-year mortality in hospitalized patients in conventional ward and later discharged. We adjusted a Bayesian logistic regression model to assess associations between the type of pneumonia and 1-year mortality controlling for confounders. Results: The study included a total of 1,693 and 2,374 discharged patients in the COVID-19 and CAP cohorts, respectively. Of these, 1,525 (90.1%) and 2,249 (95%) patients underwent analysis. Until 1-year follow-up, 69 (4.5%) and 148 (6.6%) patients from the COVID-19 and CAP cohorts, respectively, died (p = 0.008). However, the Bayesian model showed a low probability of effect (PE) of finding relevant differences in long-term mortality between CAP and COVID-19 (odds ratio 1.127, 95% credibility interval 0.862-1.591; PE = 0.774). Conclusion: COVID-19 and CAP have similar long-term mortality after adjusting for potential confounders.
RESUMEN
INTRODUCTION: Coronavirus disease 2019 (COVID-19) is a systemic disease characterized by a disproportionate inflammatory response in the acute phase. This study sought to identify clinical sequelae and their potential mechanism. METHODS: We conducted a prospective single-center study (NCT04689490) of previously hospitalized COVID-19 patients with and without dyspnea during mid-term follow-up. An outpatient group was also evaluated. They underwent serial testing with a cardiopulmonary exercise test (CPET), transthoracic echocardiogram, pulmonary lung test, six-minute walking test, serum biomarker analysis, and quality of life questionaries. RESULTS: Patients with dyspnea (n = 41, 58.6%), compared with asymptomatic patients (n = 29, 41.4%), had a higher proportion of females (73.2 vs. 51.7%; p = 0.065) with comparable age and prevalence of cardiovascular risk factors. There were no significant differences in the transthoracic echocardiogram and pulmonary function test. Patients who complained of persistent dyspnea had a significant decline in predicted peak VO2 consumption (77.8 (64-92.5) vs. 99 (88-105); p < 0.00; p < 0.001), total distance in the six-minute walking test (535 (467-600) vs. 611 (550-650) meters; p = 0.001), and quality of life (KCCQ-23 60.1 ± 18.6 vs. 82.8 ± 11.3; p < 0.001). Additionally, abnormalities in CPET were suggestive of an impaired ventilatory efficiency (VE/VCO2 slope 32 (28.1-37.4) vs. 29.4 (26.9-31.4); p = 0.022) and high PETCO2 (34.5 (32-39) vs. 38 (36-40); p = 0.025). INTERPRETATION: In this study, >50% of COVID-19 survivors present a symptomatic functional impairment irrespective of age or prior hospitalization. Our findings suggest a potential ventilation/perfusion mismatch or hyperventilation syndrome.
RESUMEN
BACKGROUND: The disposable bronchoscope is an excellent alternative to face the problem of SARS-CoV-2 and other cross infections, but the bronchoscopist's perception of its quality has not been evaluated. METHODS: To evaluate the quality of the Ambu-aScope4 disposable bronchoscope, we carried out a cross-sectional study in 21 Spanish pulmonology services. We use a standardized questionnaire completed by the bronchoscopists at the end of each bronchoscopy. The variables were described with absolute and relative frequencies, measures of central tendency and dispersion depending on their nature. The existence of learning curves was evaluated by CUSUM analysis. RESULTS: The most frequent indications in 300 included bronchoscopies was bronchial aspiration in 69.3% and the median duration of these was 9.1 min. The route of entry was nasal in 47.2% and oral in 34.1%. The average score for ease of use, image, and aspiration quality was 80/100. All the planned techniques were performed in 94.9% and the bronchoscopist was satisfied in 96.6% of the bronchoscopies. They highlighted the portability and immediacy of the aScope4TM to start the procedure in 99.3%, the possibility of taking and storing images in 99.3%. The CUSUM analysis showed average scores > 70/100 from the first procedure and from the 9th procedure more than 80% of the scores exceeded the 80/100 score. CONCLUSIONS: The aScope4™ scored well for ease of use, imaging, and aspiration. We found a learning curve with excellent scores from the 9th procedure. Bronchoscopists highlighted its portability, immediacy of use and the possibility of taking and storing images.