RESUMEN
Catch-and-release angling exposes fish to challenges that may result in sub-lethal effects or mortality. Lake trout (Salvelinus namaycush) undergo high rates of release because of size-based harvest regulations or voluntary angler behaviour. Here, we examine short-term impairment in lake trout angled during the summer (n = 74) and fall spawning period (n = 33) to inform best practices for angling. Immediately following capture or 0.5 h post-capture, fish underwent reflex and barotrauma assessments, and a small blood sample was collected. Fish were also fitted with an externally mounted biologger equipped with depth, temperature and tri-axial acceleration sensors, that was tethered to allow retrieval of the logger after 14 min. In the summer, reflex impairment and barotrauma at 0 and 0.5 h were significantly correlated. Loss of orientation and bloating were the most observed indicators. Larger fish and those captured at increased depth had higher barotrauma scores, while prolonged fight times decreased the barotrauma score regardless of sampling time. Plasma cortisol, lactate and glucose increased 0.5 h after capture, and extracellular and intracellular pH decreased, all signs that angling was inducing a metabolic response. However, no relationships were found between blood indices and mortality (18.9%). The time required to reach maximum depth after release was longer for fish with increased air exposure but shorter for those with longer fight times. During the fall, fish displayed no mortality or reflex impairment. Anal prolapse was the most observed indicator of barotrauma but only observed in females. Blood indices were most altered 0.5 h after capture, with increased cortisol values for fish that were female, particularly large or captured at deeper depth. Locomotor activity was highest for males and increased with depth. Together, our findings suggest that the effects of catch-and-release angling may be dependent on several factors, including sex, season and angling depth.
RESUMEN
Catch-and-release (C&R) angling is a conservation-oriented practice intended to reduce the impact recreational angling has on fish populations. Even though most recreationally angled fish are released, little is known about how C&R angling impacts fish at the cellular or tissue level. As the first to explore the impacts of C&R angling on mRNA abundances, our study aimed to identify how the stress of angling influenced metabolism, acid-base regulation and cellular stress in the gills of lake trout (Salvelinus namaycush). Because gills are responsible for metabolic gas exchange, are crucial sites of acid-base homeostasis and respond to stressors quickly, we hypothesized that the relative mRNA abundance of genes related to these three physiological processes would be altered after angling. We took gill samples of live lake trout at 0, 2 or 48 h after fish were angled by rod and reel, and then used quantitative PCR (qPCR) to measure the relative abundance of nine candidate mRNA transcripts. Heat shock protein 70 (hsp70) mRNA levels significantly increased over 5-fold 2 h after angling, indicating a potential activation of a cytoprotective response. However, contrary to our hypothesis, we observed no change in the relative mRNA abundance of genes related to metabolism or acid-base regulation in response to C&R angling within a 48-h period. As C&R angling can negatively impact fish populations, further use of transcript-level studies will allow us to understand the impact C&R has on specific tissues and improve our knowledge of how C&R influences overall fish health.