Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Pathogens ; 13(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39204295

RESUMEN

Naegleria fowleri is a free-living amoeba which causes primary amoebic meningoencephalitis (PAM). Although PAM is rare, the fatality rate is staggering at over 97%. So, the importance of finding an effective treatment and cure for PAM caused by N. fowleri is a crucial area of research. Existing research on developing novel therapeutic strategies to counter N. fowleri infection is limited. Since the blood-brain barrier (BBB) presents an obstacle to delivering drugs to the site of infection, it is important to employ strategies that can effectively direct the therapeutics to the brain. In this regard, our review focuses on understanding the physiology and mechanisms by which molecules pass through the BBB, the current treatment options available for PAM, and the recent research conducted in the decade of 2012 to 2022 on the use of nanomaterials to enhance drug delivery. In addition, we compile research findings from other central nervous system (CNS) diseases that use shuttle peptides which allow for transport of molecules through the BBB. The approach of utilizing BBB shuttles to administer drugs through the BBB may open up new areas of drug discovery research in the field of N. fowleri infection.

2.
Antimicrob Agents Chemother ; 68(1): e0073123, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38063401

RESUMEN

The intestinal parasites Giardia lamblia and Entamoeba histolytica are major causes of morbidity and mortality associated with diarrheal diseases. Metronidazole is the most common drug used to treat giardiasis and amebiasis. Despite its efficacy, treatment failures in giardiasis occur in up to 5%-40% of cases. Potential resistance of E. histolytica to metronidazole is an increasing concern. Therefore, it is critical to search for more effective drugs to treat giardiasis and amebiasis. We identified antigiardial and antiamebic activities of the rediscovered nitroimidazole compound, fexinidazole, and its sulfone and sulfoxide metabolites. Fexinidazole is equally active against E. histolytica and G. lamblia trophozoites, and both metabolites were 3- to 18-fold more active than the parent drug. Fexinidazole and its metabolites were also active against a metronidazole-resistant strain of G. lamblia. G. lamblia and E. histolytica cell extracts exhibited decreased residual nitroreductase activity when metabolites were used as substrates, indicating nitroreductase may be central to the mechanism of action of fexinidazole. In a cell invasion model, fexinidazole and its metabolites significantly reduced the invasiveness of E. histolytica trophozoites through basement membrane matrix. A q.d. oral dose of fexinidazole and its metabolites at 10 mg/kg for 3 days reduced G. lamblia infection significantly in mice compared to control. The newly discovered antigiardial and antiamebic activities of fexinidazole, combined with its FDA-approval and inclusion in the WHO Model List of Essential Medicines for the treatment of human African trypanosomiasis, offer decreased risk and a shortened development timeline toward clinical use of fexinidazole for treatment of giardiasis or amebiasis.


Asunto(s)
Amebiasis , Entamoeba histolytica , Giardia lamblia , Giardiasis , Nitroimidazoles , Ratones , Animales , Humanos , Giardiasis/tratamiento farmacológico , Giardiasis/parasitología , Metronidazol/farmacología , Metronidazol/uso terapéutico , Nitroimidazoles/farmacología , Nitrorreductasas
3.
J Med Chem ; 66(24): 17059-17073, 2023 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-38085955

RESUMEN

Developing drugs for brain infection by Naegleria fowleri is an unmet medical need. We used a combination of cheminformatics, target-, and phenotypic-based drug discovery methods to identify inhibitors that target an essential N. fowleri enzyme, sterol 14-demethylase (NfCYP51). A total of 124 compounds preselected in silico were tested against N. fowleri. Nine primary hits with EC50 ≤ 10 µM were phenotypically identified. Cocrystallization with NfCYP51 focused attention on one primary hit, miconazole-like compound 2a. The S-enantiomer of 2a produced a 1.74 Å cocrystal structure. A set of analogues was then synthesized and evaluated to confirm the superiority of the S-configuration over the R-configuration and the advantage of an ether linkage over an ester linkage. The two compounds, S-8b and S-9b, had an improved EC50 and KD compared to 2a. Importantly, both were readily taken up into the brain. The brain-to-plasma distribution coefficient of S-9b was 1.02 ± 0.12, suggesting further evaluation as a lead for primary amoebic meningoencephalitis.


Asunto(s)
Miconazol , Naegleria fowleri , Inhibidores de 14 alfa Desmetilasa/farmacología , Descubrimiento de Drogas
4.
Sensors (Basel) ; 23(21)2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37960385

RESUMEN

The occurrence of tomato diseases has substantially reduced agricultural output and financial losses. The timely detection of diseases is crucial to effectively manage and mitigate the impact of episodes. Early illness detection can improve output, reduce chemical use, and boost a nation's economy. A complete system for plant disease detection using EfficientNetV2B2 and deep learning (DL) is presented in this paper. This research aims to develop a precise and effective automated system for identifying several illnesses that impact tomato plants. This will be achieved by analyzing tomato leaf photos. A dataset of high-resolution photographs of healthy and diseased tomato leaves was created to achieve this goal. The EfficientNetV2B2 model is the foundation of the deep learning system and excels at picture categorization. Transfer learning (TF) trains the model on a tomato leaf disease dataset using EfficientNetV2B2's pre-existing weights and a 256-layer dense layer. Tomato leaf diseases can be identified using the EfficientNetV2B2 model and a dense layer of 256 nodes. An ideal loss function and algorithm train and tune the model. Next, the concept is deployed in smartphones and online apps. The user can accurately diagnose tomato leaf diseases with this application. Utilizing an automated system facilitates the rapid identification of diseases, assisting in making informed decisions on disease management and promoting sustainable tomato cultivation practices. The 5-fold cross-validation method achieved 99.02% average weighted training accuracy, 99.22% average weighted validation accuracy, and 98.96% average weighted test accuracy. The split method achieved 99.93% training accuracy and 100% validation accuracy. Using the DL approach, tomato leaf disease identification achieves nearly 100% accuracy on a test dataset.


Asunto(s)
Inteligencia Artificial , Solanum lycopersicum , Teléfono Inteligente , Algoritmos , Hojas de la Planta
5.
ACS Infect Dis ; 9(12): 2622-2631, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-37943251

RESUMEN

Primary amebic meningoencephalitis (PAM), a brain infection caused by a free-living ameba Naegleria fowleri, leads to an extensive inflammation of the brain and death within 1-18 (median 5) days after symptoms begin. Although natural products have played a significant role in the development of drugs for over a century, research focusing on identifying new natural product-based anti-N. fowleri agents is limited. We undertook a large-scale ATP bioluminescence-based screen of about 10,000 unique marine microbial metabolite mixtures against the trophozoites of N. fowleri. Our screen identified about 100 test materials with >90% inhibition at 50 µg/mL and a dose-response study found 20 of these active test materials exhibiting an EC50 ranging from 0.2 to 2 µg/mL. Examination of four of these potent metabolite mixtures, derived from our actinomycete strains CNT671, CNT756, and CNH301, resulted in the isolation of a pure metabolite identified as oligomycin D. Oligomycin D exhibited nanomolar potency on multiple genotypes of N. fowleri, and it was five- or 850-times more potent than the recommended drugs amphotericin B or miltefosine. Oligomycin D is fast-acting and reached its EC50 in 10 h, and it was also able to inhibit the invasiveness of N. fowleri significantly when tested on a matrigel invasion assay. Since oligomycin is known to manifest inhibitory activity against F1FO ATP synthase, we tested different F1FO ATP synthase inhibitors and identified a natural peptide leucinostatin as a fast-acting amebicidal compound with nanomolar potency on multiple strains.


Asunto(s)
Amebicidas , Infecciones Protozoarias del Sistema Nervioso Central , Naegleria fowleri , Humanos , Infecciones Protozoarias del Sistema Nervioso Central/diagnóstico , Infecciones Protozoarias del Sistema Nervioso Central/tratamiento farmacológico , Rutamicina , Anfotericina B/farmacología
6.
Pathogens ; 11(12)2022 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-36558759

RESUMEN

Metals have been used in medicine since ancient times for the treatment of different ailments with various elements such as iron, gold and arsenic. Metal complexes have also been reported to show antibiotic and antiparasitic activity. In this context, we tested the antiparasitic potential of 10 organotin (IV) derivatives from 4-(4-methoxyphenylamino)-4 oxobutanoic acid (MS26) against seven eukaryotic pathogens of medical importance: Leishmania donovani, Trypanosoma cruzi, Trypanosoma brucei, Entamoeba histolytica, Giardia lamblia, Naegleria fowleri and Schistosoma mansoni. Among the compounds with and without antiparasitic activity, compound MS26Et3 stood out with a 50% effective concentration (EC50) of 0.21 and 0.19 µM against promastigotes and intracellular amastigotes of L. donovani, respectively, 0.24 µM against intracellular amastigotes of T. cruzi, 0.09 µM against T. brucei, 1.4 µM against N. fowleri and impaired adult S. mansoni viability at 1.25 µM. In terms of host/pathogen selectivity, MS26Et3 demonstrated relatively mild cytotoxicity toward host cells with a 50% viability concentration of 4.87 µM against B10R cells (mouse monocyte cell line), 2.79 µM against C2C12 cells (mouse myoblast cell line) and 1.24 µM against HEK923 cells (human embryonic kidney cell line). The selectivity index supports this molecule as a therapeutic starting point for a broad spectrum antiparasitic alternative. Proteomic analysis of host cells infected with L. donovani after exposure to MS26Et3 showed a reduced expression of Rab7, which may affect the fusion of the endosome with the lysosome, and, consequently, impairing the differentiation of L. donovani to the amastigote form. Future studies to investigate the molecular target(s) and mechanism of action of MS26Et3 will support its chemical optimization.

7.
Antibiotics (Basel) ; 11(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36421252

RESUMEN

Helicobacter pylori is responsible for a wide range of gastric diseases, including gastric cancer and gastritis. With half of the world's population infected by H. pylori and the current standard of care associated with suboptimal outcomes, a search for more effective drugs is critical. To facilitate drug screening for H. pylori, we developed a microtiter plate-based compound screening method that is faster and can screen multiple compounds. We identified activities of fexinidazole and its sulfoxide and sulfone metabolites against H. pylori. Both fexinidazole and its metabolites exhibited equipotency against SS1, 60190, and G27 strains, which were about 3-6-fold more potent than the currently used metronidazole. We also determined the minimal inhibitory concentration (MIC) of metronidazole, fexinidazole, and its metabolites against these strains by a traditional agar plate-based method. While MIC values of fexinidazole and metronidazole were similar against all the strains, both sulfoxide and sulfone showed lower MIC values than metronidazole against SS1 and 60190. Given the recent FDA approval of fexinidazole, our data on the in vitro antibacterial activities of fexinidazole and its metabolites support further evaluation of this drug with the goal of producing an alternative nitro-based antimicrobial with good safety profiles for the treatment of H. pylori infection.

8.
Microbiol Spectr ; 10(3): e0007722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467370

RESUMEN

Traditional cysticidal assays for Acanthamoeba species revolve around treating cysts with compounds and manually observing the culture for evidence of excystation. This method is time-consuming, labor-intensive, and low throughput. We adapted and trained a YOLOv3 machine learning, object detection neural network to recognize Acanthamoeba castellanii trophozoites and cysts in microscopy images to develop an automated cysticidal assay. This trained neural network was used to count trophozoites in wells treated with compounds of interest to determine if a compound treatment was cysticidal. We validated this new assay with known cysticidal and noncysticidal compounds. In addition, we undertook a large-scale bioluminescence-based screen of 9,286 structurally unique marine microbial metabolite fractions against the trophozoites of A. castellanii and identified 29 trophocidal hits. These hits were then subjected to this machine learning-based automated cysticidal assay. One marine microbial metabolite fraction was identified as both trophocidal and cysticidal. IMPORTANCE The free-living Acanthamoeba can exist as a trophozoite or cyst and both stages can cause painful blinding keratitis. Infection recurrence occurs in approximately 10% of cases due to the lack of efficient drugs that can kill both trophozoites and cysts. Therefore, the discovery of therapeutics that are effective against both stages is a critical unmet need to avert blindness. Current efforts to identify new anti-Acanthamoeba compounds rely primarily upon assays that target the trophozoite stage of the parasite. We adapted and trained a machine learning, object detection neural network to recognize Acanthamoeba trophozoites and cysts in microscopy images. Our machine learning-based cysticidal assay improved throughput, demonstrated high specificity, and had an exquisite ability to identify noncysticidal compounds. We combined this cysticidal assay with our bioluminescence-based trophocidal assay to screen about 9,000 structurally unique marine microbial metabolites against A. castellanii. Our screen identified a marine metabolite that was both trophocidal and cysticidal.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Amebicidas/farmacología , Amebicidas/uso terapéutico , Animales , Aprendizaje Automático , Trofozoítos
9.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-34959694

RESUMEN

Acanthamoeba species of amebae are often associated with Acanthamoeba keratitis, a severe corneal infection. Isavuconazonium sulfate is an FDA-approved drug for the treatment of invasive aspergillosis and mucormycosis. This prodrug is metabolized into the active isavuconazole moiety. Isavuconazole was previously identified to have amebicidal and cysticidal activity against Acanthamoeba T4 strains, but the activity of its prodrug, isavuconazonium sulfate, against trophozoites and cysts remains unknown. Since it is not known if isavuconazonium can be metabolized into isavuconazole in the human eye, we evaluated the activities of isavuconazonium sulfate against trophozoites and cysts of three T4 genotype strains of Acanthamoeba. Isavuconazonium displayed amebicidal activity at nanomolar concentrations as low as 1.4 nM and prevented excystation of cysts at concentrations as low as 136 µM. We also investigated the cysticidal activity of isavuconazonium sulfate in combination with a currently used amebicidal drug polyhexamethylene biguanide (PHMB). Although combination of isavuconazonium with PHMB did not elicit an obvious synergistic cysticidal activity, the combination did not cause an antagonistic effect on the cysts of Acanthamoeba T4 strains. Collectively, these findings suggest isavuconazonium retains potency against Acanthamoeba T4 strains and could be adapted for Acanthamoeba keratitis treatment.

10.
Expert Rev Anti Infect Ther ; 19(11): 1427-1441, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33929276

RESUMEN

Introduction: Acanthamoeba encompasses several species of free-living ameba encountered commonly throughout the environment. Unfortunately, these species of ameba can cause opportunistic infections that result in Acanthamoeba keratitis, granulomatous amebic encephalitis, and occasionally systemic infection.Areas covered: This review discusses relevant literature found through PubMed and Google scholar published as of January 2021. The review summarizes current common Acanthamoeba keratitis treatments, drug discovery methodologies available for screening potential anti-Acanthamoeba compounds, and the anti-Acanthamoeba activity of various azole antifungal agents.Expert opinion: While several biguanide and diamidine antimicrobial agents are available to clinicians to effectively treat Acanthamoeba keratitis, no singular treatment can effectively treat every Acanthamoeba keratitis case.Efforts to identify new anti-Acanthamoeba agents include trophozoite cell viability assays, which are amenable to high-throughput screening. Cysticidal assays remain largely manual and would benefit from further automation development. Additionally, the existing literature on the effectiveness of various azole antifungal agents for treating Acanthamoeba keratitis is incomplete or contradictory, suggesting the need for a systematic review of all azoles against different pathogenic Acanthamoeba strains.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Amebicidas , Queratitis por Acanthamoeba/tratamiento farmacológico , Amebicidas/farmacología , Amebicidas/uso terapéutico , Azoles/farmacología , Azoles/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA