Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39065816

RESUMEN

According to the World Health Organization, over 422 million people worldwide have diabetes, with the majority residing in low- and middle-income countries. Diabetes causes 1.5 million fatalities a year. The number of diabetes cases and its prevalence have progressively increased over the last few decades. This study aims to determine the phytochemicals in the edible part of Perkia javanica, predict their α-glucosidase inhibitory potential, one of the promising targets for diabetes, and then carry out in vitro and in vivo studies. The phytochemicals present in the n-butanol fraction of the methanol extract of P. javanica pods were analyzed using UHPLC-QTOF-MS/MS (Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry). The UHPLC-QTOF analysis revealed the presence of 79 different compounds in the n-butanol fraction. Among these, six compounds demonstrated excellent binding affinities with α-glucosidase, surpassing the performance of two standard inhibitors, Miglitol and Voglibose. In vitro α-glucosidase inhibitory activities were assessed by the n-butanol fraction, followed by in vivo studies. According to the in vitro study, the inhibitory efficiency against α-glucosidase was determined to have an IC50 value of 261.9 µg/mL. The in vivo findings revealed a significant reduction in blood glucose levels in Swiss albino mice treated with the same extract, decreasing from 462.66 mg/dL to 228.66 mg/dL. Additionally, the extract significantly increased the activity of the enzymes catalase and superoxide dismutase (SOD) and decreased the amount of malondialdehyde (MDA) in the liver and kidney tissue. The predicted physicochemical parameters indicated that most of the compounds would be excreted from the body after inhibition in the small intestine without being absorbed. Considering the low cost and wide availability of raw materials, P. javanica pods can serve as a good food supplement that may help prevent type 2 diabetes management.

2.
Saudi Pharm J ; 32(6): 102095, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38766274

RESUMEN

Background: According to the International Diabetes Federation, there will be 578 million individuals worldwide with diabetes by 2030 and 700 million by 2045. One of the promising drug targets to fight diabetes is α-glucosidase (AG), and its inhibitors may be used to manage diabetes by reducing the breakdown of complex carbohydrates into simple sugars. The study aims to identify and validate potential AG inhibitors in natural sources to combat diabetes. Methods: Computational techniques such as structure-based virtual screening and molecular dyncamic simulation were employed to predict potential AG inhibitors from compounds of Oroxylum indicum. Finally, in silico results were validated by in vitro analysis using n-butanol fraction of crude methanol extracts. Results: The XP glide scores of top seven hits OI_13, OI_66, OI_16, OI_44, OI_43, OI_20, OI_78 and acarbose were -14.261, -13.475, -13.074, -13.045, -12.978, -12.659, -12.354 and -12.296 kcal/mol, respectively. These hits demonstrated excellent binding affinity towards AG, surpassing the known AG inhibitor acarbose. The MM-GBSA dG binding energies of OI_13, OI_66, and acarbose were -69.093, -62.950, and -53.055 kcal/mol, respectively. Most of the top hits were glycosides, indicating that active compounds lie in the n-butanol fraction of the extract. The IC50 value for AG inhibition by n-butanol fraction was 248.1 µg/ml, and for that of pure acarbose it was 89.16 µg/ml. The predicted oral absorption rate in humans for the top seven hits was low like acarbose, which favors the use of these compounds as anti-diabetes in the small intestine. Conclusion: In summary, the study provides promising insights into the use of natural compounds derived from O. indicum as potential AG inhibitors to manage diabetes. However, further research, including clinical trials and pharmacological studies, would be necessary to validate their efficacy and safety before clinical use.

3.
In Silico Pharmacol ; 12(1): 18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525048

RESUMEN

According to WHO, antibiotic resistance is one of the biggest healthcare challenges to the global community. Therefore, it is absolutely essential to discover new antibiotics to address the challenge. Dicliptera paniculata (ForssK.) I. Darbysh, a rare medicinal herb of Acanthaceae, is known for its noteworthy uses as a flavoring, spicing, and antibacterial agent. The primary goal of the study is to identify novel antibacterials from D. paniculata. The petroleum ether fraction of the methanol extract of D. paniculata was subjected to GC-MS and identified 14 compounds. Several bacterial target proteins were used for molecular docking. The antibacterial activity of petroleum-ether fraction was evaluated on bacteria whose target protein interacts most strongly with identified molecules. The molecules DP_02, DP_06, and DP_14 exhibited the highest docking scores with Staphylococcus aureus dihydrofolate reductase, which were - 6.283, - 7.705, and - 6.364 kcal/mol, respectively. The MM-GBSA binding energy of compounds DP_02, DP_06, and DP_14 were - 46.736, - 42.366, and - 35.734 kcal/mol, respectively. The MM-GBSA binding energy and decent docking score of the compounds DP_02 and DP_06 were both encouraging, and both of the compounds are drug-like. The finding was validated through studies on antibacterial effectiveness against S. aureus and showed encouraging results. These two molecules might serve as the building blocks for the future development of potent antibiotics.

4.
J Biomol Struct Dyn ; 42(5): 2464-2481, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37349948

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinases are overexpressed in several human cancers and could serve as a promising anti-cancer drug target. With this in view, the main aim of the present study was to identify spices having the potential to inhibit EGFR tyrosine kinase. The structure-based virtual screening of spice database consisting of 1439 compounds with EGFR tyrosine kinase (PDB ID: 3W32) was carried out using Glide. Top scored 18 hits (XP Glide Score ≥ -10.0 kcal/mol) was further docked with three EGFR tyrosine kinases and three EGFR T790M/L858R mutants using AutodockVina, followed by ADME filtration. The best three hits were further refined by Molecular Dynamics (MD) simulation and MM-GBSA-based binding energy calculation. The overall docking results of the selected hits with both EGFR and EGFR T790M/L858R were quite satisfactory and showed strong binding compared to the three coligands. Detailed MD analysis of CL_07, AC_11 and AS_49 also showed the stability of the protein-ligand complexes. Moreover, the hits were drug-like, and MM-GBSA binding free energy of CL_07 and AS_49 was established to be far better. AC_11 was found to be similar to the known inhibitor Gefitinib. Most of the potential hits are available in Allium cepa, CL_07 and AS_49 available in Curcuma longa and Allium sativum, respectively. Therefore, these three spices could be used as a potential therapeutic candidate against cancer caused by overexpression of EGFR after validation of the observations of this study in in-vitro experiments. Further extensive work is needed to improve the scaffolds CL_07, AC_11, AC_17, and AS_49 as potential anti-cancer drugs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Simulación de Dinámica Molecular , Receptores ErbB/metabolismo , Especias , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/química , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Tirosina
5.
Nat Prod Res ; : 1-6, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36214683

RESUMEN

Styrax benzoin fumes have a spiritual aspect from ancient times, magical essence like a pleasant perfume, and are employed in religious ceremonies in India. This study aims to identify the volatile compounds in S. benzoin extract, their binding affinity to the bacterial target proteins, and study the antibacterial activity of the potential extract. The compounds obtained from GC-MS analysis of S. benzoin extract were subjected to molecular docking studies against DHFR of Staphylococcus aureus, tRNA synthetase of Escherichia coli, DHPS of Mycobacterium tuberculosis. Molecular docking studies revealed that seventeen compounds out of 20 compounds exhibited higher binding affinity than co-ligand (-7.00 kcal/mol) against the Staphylococcus aureus enzyme DHFR. Consequently, the crude extracts were evaluated for antibacterial activity against S. aureus, and the acetone extract showed promising findings. S. benzoin fumes might replace synthetic room fresheners, and promising compounds could be exploited in the cosmetics industry.

6.
Sci Rep ; 12(1): 1503, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087077

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is highly pathogenic to humans and has created health care threats worldwide. This urgent situation has focused the researchers worldwide towards the development of novel vaccine or small molecule therapeutics for SARS-CoV-2. Although several vaccines have already been discovered and are in use for the masses, no therapeutic medication has yet been approved by FDA for the treatment of COVID-19. Keeping this in view, in the present study, we have identified promising hits against the main protease (Mpro) of SARS-CoV-2 from edible mushrooms. Structure-based virtual screening (VS) of 2433 compounds derived from mushrooms was performed with Mpro protein (6LU7). Four promising hits, namely, Kynapcin-12 (M_78), Kynapcin-28 (M_82), Kynapcin-24 (M_83), and Neonambiterphenyls-A (M_366) were identified based on the result of docking, Lipinski's rule, 100 ns molecular dynamics (MD) simulation and MM/PBSA binding free energy calculations. Finally, the inhibitory properties of these hits were compared with three known inhibitors, baicalein (1), baicalin (2), and biflavonoid (3). Data indicated that M_78, M_82 and M_83 compounds present in edible mushroom Polyozellus multiplex were potent inhibitors of Mproprotein (6LU7). It could be concluded that edible mushroom Polyozellus multiplex has potential activity against SARS-CoV-2 infection and identified molecules could be further explored as therapeutic inhibitors against SARS-CoV-2.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Antivirales/farmacología , Antivirales/uso terapéutico , Basidiomycota/química , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Simulación de Dinámica Molecular , Inhibidores de Proteasas/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Compuestos de Terfenilo/farmacología , Compuestos de Terfenilo/uso terapéutico , Tratamiento Farmacológico de COVID-19
7.
J Biomol Struct Dyn ; 40(2): 941-962, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32948116

RESUMEN

The outbreak of novel coronavirus disease (COVID-19) caused by SARS-CoV-2 poses a serious threat to human health and world economic activity. There is no specific drug for the treatment of COVID-19 patients at this moment. Traditionally, people have been using spices like ginger, fenugreek and onion, etc. for the remedy of a common cold. This work identifies the potential inhibitors of the main protease (Mpro) and spike (S) receptor of SARS-CoV-2 from 10 readily available spices. These two proteins, S and Mpro, play an important role during the virus entry into the host cell, and replication and transcription processes of the virus, respectively. To identify potential molecules an in-house databank containing 1040 compounds was built-up from the selected spices. Structure-based virtual screening of this databank was performed with two important SARS-CoV-2 proteins using Glide. Top hits resulted from virtual screening (VS) were subjected to molecular docking using AutoDock 4.2 and AutoDock Vina to eliminate false positives. The top six hits against Mpro and top five hits against spike receptor subjected to 130 ns molecular dynamic simulation using GROMACS. Finally, the compound 1-, 2-, 3- and 5-Mpro complexes, and compound 17-, 18-, 19-, 20- and 21- spike receptor complexes showed stability throughout the simulation time. The ADME values also supported the drug-like nature of the selected hits. These nine compounds are available in onion, garlic, ginger, peppermint, chili and fenugreek. All the spices are edible and might be used as home remedies against COVID-19 after proper biological evaluation.


Asunto(s)
COVID-19 , Inhibidores de Proteasas , SARS-CoV-2 , Especias , Glicoproteína de la Espiga del Coronavirus , Proteasas 3C de Coronavirus , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
8.
Nat Prod Res ; 36(17): 4563-4568, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34694165

RESUMEN

Coronavirus disease 2019 (COVID-19) has created huge social, economic and human health crises globally. Discovery of specific drugs has become a new challenge to the researcher. Structure-based virtual-screening of our in-house databank containing1102 phytochemicals of Zingiberaceae family was performed with main protease(Mpro), a crucial enzyme of SARS-CoV-2. Rigorous docking and ADME study of top-scored twenty hits resulted from VS was performed. Then 100 ns molecular dynamics followed by MMPBSA binding free energy(ΔGbind) calculation of A280 and KZ133 was also performed. These two hits showed good interactions with crucial amino acid residues of Mpro HIS-41 and CYS-145, excellent ADME properties, fair ΔGbind values (> ‒188.03 kj/mol), and average protein-ligand complex RMSD < apo-protein RMSD. Therefore, the seed extracts of Alpinia blepharocalyx and rhizome extracts Kaempferia angustifolia containing A280 and KZ133, respectively, may be useful against COVID-19 after the proper biological screening. These two novel scaffolds could be exploited as potent SARS-CoV-2-Mpro inhibitors.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Zingiberaceae , Antivirales/química , Antivirales/farmacología , Proteasas 3C de Coronavirus , Cisteína Endopeptidasas , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Fitoquímicos/farmacología , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2 , Proteínas no Estructurales Virales , Zingiberaceae/metabolismo
9.
ChemistrySelect ; 5(30): 9388-9398, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32835090

RESUMEN

The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection. Observing the spread, illness and death caused by COVID-19, the World Health Organization (WHO) declared COVID-19 a pandemic. To date, there is no approved therapeutics or effective treatment available to combat the outbreak. This urgent situation is pressing the world to respond with development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. In line with these efforts, the structure of several proteins of SARS-CoV-2 has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. In this paper, we aim to find out the small molecule inhibitors for ADP-ribose phosphatase of SARS-CoV-2. In order to identify potential inhibitors, we applied sequential E-pharmacophore and structure-based virtual screening (VS) of MolPort database containing 113687 number of commercially available natural compounds using Glide module. Six potential inhibitors having admirable XP glide score range from -11.009 to -14.684 kcal/mol and good binding affinity towards active sites were identified. All the molecules are commercially available for further characterization and development by scientific community. The in vitro activity of selected inhibitors can be done easily which will provide useful information for clinical treatment of novel coronavirus pneumonia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA