Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Acta Biomater ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39393659

RESUMEN

Modular hip implants are a clinically successful and widely used treatment for patients with arthritis. Despite ongoing retrieval studies the understanding of the fundamental physico-chemical mechanisms of friction and wear within the head-taper interface is still limited. Here, we Raman-spectroscopically analyze structural features of the biotribological material which is formed within the taper joint between Ti6Al4V and low-carbon cobalt alloy or high-nitrogen steel surfaces in in vitro gross-slip fretting corrosion tests with bovine calf serum. As a function of the fretting duration, we investigate short and long aliphatic chains and their adsorption behavior on the cobalt- and steel-type surfaces. Using the intensity and frequency shifts of the amide I and III Raman bands, we furthermore identify progressive protein folding and unfolding including the secondary structures of α-helix, ß-sheet, and random-coil configuration as well as the formation of proteinaceous clusters depending on the hydrophilicity of the metallic surfaces. We additionally find a mixture of chromates and iron oxides with tryptophan and tyrosine at the worn cobalt alloy and high-nitrogen steel surfaces, respectively. Also, for long fretting duration, sp2 hybridized amorphous carbon is formed due to fretting-induced cleavage of proteins. STATEMENT OF SIGNIFICANCE: Despite efforts enhancing the biomedical tribology of hip implants, the impact of the organic environment on friction&wear at the femoral head-stem taper interface is limitedly understood. Using Raman spectroscopy we resolve structural changes within the biotribological material agglomerated at biomedical-grade metal alloys due to organo-metallic interactions during in vitro fretting corrosion tests. Adsorption of short and long aliphatic chains, progressive protein (un)folding and proteinaceous cluster formation depend to a distinguishable extent on the fretting duration and type of alloy. Chromates and iron oxides are mixed with tryptophan and tyrosine, and amorphous carbon is formed resulting from a fretting-induced cleavage of serum proteins. Such information spectroscopically gleaned from biotribological material are vital to improve the design and performance of taper junctions.

2.
J Funct Biomater ; 15(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667567

RESUMEN

Modular artificial hip joints are a clinical standard today. However, the release of wear products from the head-taper interface, which includes wear particles in the nm size range, as well as metal ions, have raised concerns. Depending on the loading of such taper joints, a wide variety of different mechanisms have been found by retrieval analyses. From these, this paper concentrates on analyzing the contribution of gross slip fretting corrosion at ultra-mild wear rates using a bovine calf serum solution (BCS) as the lubricant. The parameters were chosen based on biomechanical considerations, producing wear rates of some ng/m wear path. In parallel, the evolution of tribomaterial (third bodies) was analyzed as to its constituents and generation rates. It has already been shown earlier that, by an advantageous combination of wear mechanisms and submechanisms, certain constituents of the tribomaterial remain inside the contact area and act like extreme-pressure lubricant additives. For the known wear and corrosion resistance of austenitic high-nitrogen steels (AHNSs), which outperform CoCrMo alloys even under inflammatory conditions, we hypothesized that such steels will generate ultra-mild wear rates under gross slip fretting. While testing AHNSs against commercially available biomedical-grade materials of CoCrMo and TiAlV alloys, as well as zirconia-toughened alumina (ZTA) and against itself, it was found that AHNSs in combination with a Ti6Al4V alloy generated the smallest wear rate under gross slip fretting corrosion. This paper then discusses the wear behavior on the basis of ex situ analyses of the worn surfaces as to the acting wear mechanisms and submechanisms, as well as to the tribological reaction products.

3.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628155

RESUMEN

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Asunto(s)
Enfermedad de Fabry , Animales , Diagnóstico Precoz , Enfermedad de Fabry/diagnóstico por imagen , Humanos , Lípidos , Ratones , Microscopía/métodos , Espectrometría Raman/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA