Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6966, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907483

RESUMEN

During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Fibroblastos Asociados al Cáncer/patología , Mecanotransducción Celular , Línea Celular Tumoral , Fibroblastos/patología , Microambiente Tumoral , Neoplasias/patología
2.
Phys Rev Lett ; 131(26): 268301, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215373

RESUMEN

Topological defects in active polar fluids can organize spontaneous flows and influence macroscopic density patterns. Both of them play an important role during animal development. Yet the influence of density on active flows is poorly understood. Motivated by experiments on cell monolayers confined to disks, we study the coupling between density and polar order for a compressible active polar fluid in the presence of a +1 topological defect. As in the experiments, we find a density-controlled spiral-to-aster transition. In addition, biphasic orientational phases emerge as a generic outcome of such coupling. Our results highlight the importance of density gradients as a potential mechanism for controlling flow and orientational patterns in biological systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA