Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Nat Med ; 27(11): 1928-1940, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34663987

RESUMEN

Genes involved in distinct diabetes types suggest shared disease mechanisms. Here we show that One Cut Homeobox 1 (ONECUT1) mutations cause monogenic recessive syndromic diabetes in two unrelated patients, characterized by intrauterine growth retardation, pancreas hypoplasia and gallbladder agenesis/hypoplasia, and early-onset diabetes in heterozygous relatives. Heterozygous carriers of rare coding variants of ONECUT1 define a distinctive subgroup of diabetic patients with early-onset, nonautoimmune diabetes, who respond well to diabetes treatment. In addition, common regulatory ONECUT1 variants are associated with multifactorial type 2 diabetes. Directed differentiation of human pluripotent stem cells revealed that loss of ONECUT1 impairs pancreatic progenitor formation and a subsequent endocrine program. Loss of ONECUT1 altered transcription factor binding and enhancer activity and NKX2.2/NKX6.1 expression in pancreatic progenitor cells. Collectively, we demonstrate that ONECUT1 controls a transcriptional and epigenetic machinery regulating endocrine development, involved in a spectrum of diabetes, encompassing monogenic (recessive and dominant) as well as multifactorial inheritance. Our findings highlight the broad contribution of ONECUT1 in diabetes pathogenesis, marking an important step toward precision diabetes medicine.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Factor Nuclear 6 del Hepatocito/genética , Páncreas/embriología , Diferenciación Celular/genética , Anomalías Congénitas/genética , Retardo del Crecimiento Fetal/genética , Vesícula Biliar/anomalías , Proteína Homeobox Nkx-2.2/biosíntesis , Proteínas de Homeodominio/biosíntesis , Humanos , Lactante , Recién Nacido , Masculino , Herencia Multifactorial/genética , Organogénesis/genética , Páncreas/anomalías , Enfermedades Pancreáticas/congénito , Enfermedades Pancreáticas/genética , Células Madre Pluripotentes/citología , Transcripción Genética/genética
2.
Eur J Endocrinol ; 184(3): 455-468, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33486469

RESUMEN

OBJECTIVE: DNAJC3, also known as P58IPK, is an Hsp40 family member that interacts with and inhibits PKR-like ER-localized eIF2α kinase (PERK). Dnajc3 deficiency in mice causes pancreatic ß-cell loss and diabetes. Loss-of-function mutations in DNAJC3 cause early-onset diabetes and multisystemic neurodegeneration. The aim of our study was to investigate the genetic cause of early-onset syndromic diabetes in two unrelated patients, and elucidate the mechanisms of ß-cell failure in this syndrome. METHODS: Whole exome sequencing was performed and identified variants were confirmed by Sanger sequencing. DNAJC3 was silenced by RNAi in INS-1E cells, primary rat ß-cells, human islets, and induced pluripotent stem cell-derived ß-cells. ß-cell function and apoptosis were assessed, and potential mediators of apoptosis examined. RESULTS: The two patients presented with juvenile-onset diabetes, short stature, hypothyroidism, neurodegeneration, facial dysmorphism, hypoacusis, microcephaly and skeletal bone deformities. They were heterozygous compound and homozygous for novel loss-of-function mutations in DNAJC3. DNAJC3 silencing did not impair insulin content or secretion. Instead, the knockdown induced rat and human ß-cell apoptosis and further sensitized cells to endoplasmic reticulum stress, triggering mitochondrial apoptosis via the pro-apoptototic Bcl-2 proteins BIM and PUMA. CONCLUSIONS: This report confirms previously described features and expands the clinical spectrum of syndromic DNAJC3 diabetes, one of the five monogenic forms of diabetes pertaining to the PERK pathway of the endoplasmic reticulum stress response. DNAJC3 deficiency may lead to ß-cell loss through BIM- and PUMA-dependent activation of the mitochondrial pathway of apoptosis.


Asunto(s)
Apoptosis/genética , Diabetes Mellitus Tipo 1/genética , Proteínas del Choque Térmico HSP40/genética , Células Secretoras de Insulina/fisiología , Mitocondrias/metabolismo , Adolescente , Adulto , Factores de Edad , Animales , Células Cultivadas , Diabetes Mellitus Tipo 1/metabolismo , Femenino , Humanos , Células Secretoras de Insulina/metabolismo , Mutación con Pérdida de Función , Masculino , Ratones , Mitocondrias/patología , Linaje , Ratas , Síndrome
3.
Genes (Basel) ; 8(11)2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29112131

RESUMEN

Monogenic forms of diabetes may account for 1-5% of all cases of diabetes, and may occur in the context of syndromic presentations. We investigated the case of a girl affected by insulin-dependent diabetes, diagnosed at 6 years old, associated with congenital cataract. Her consanguineous parents and her four other siblings did not have diabetes or cataract, suggesting a recessive syndrome. Using whole exome sequencing of the affected proband, we identified a heterozygous p.R825Q ABCC8 mutation, located at the exact same amino-acid position as the p.R825W recurring diabetes mutation, hence likely responsible for the diabetes condition, and a homozygous p.G71S mutation in CRYBB1, a gene known to be responsible for congenital cataract. Both mutations were predicted to be damaging and were absent or extremely rare in public databases. Unexpectedly, we found that the mother was also homozygous for the CRYBB1 mutation, and both the mother and one unaffected sibling were heterozygous for the ABCC8 mutation, suggesting incomplete penetrance of both mutations. Incomplete penetrance of ABCC8 mutations is well documented, but this is the first report of an incomplete penetrance of a CRYBB1 mutation, manifesting between susceptible subjects (unaffected mother vs. affected child) and to some extent within the patient herself, who had distinct cataract severities in both eyes. Our finding illustrates the importance of family studies to unmask the role of confounding factors such as double-gene mutations and incomplete penetrance that may mimic monogenic syndromes including in the case of strongly evocative family structure with consanguinity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA