Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Neuroinflammation ; 21(1): 173, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014461

RESUMEN

Dietary patterns that include an excess of foods rich in saturated fat are associated with brain dysfunction. Although microgliosis has been proposed to play a key role in the development of brain dysfunction in diet-induced obesity (DIO), neuroinflammation with cytokine over-expression is not always observed. Thus, mechanisms by which microglia contribute to brain impairment in DIO are uncertain. Using the BV2 cell model, we investigated the gliosis profile of microglia exposed to palmitate (200 µmol/L), a saturated fatty acid abundant in high-fat diet and in the brain of obese individuals. We observed that microglia respond to a 24-hour palmitate exposure with increased proliferation, and with a metabolic network rearrangement that favors energy production from glycolysis rather than oxidative metabolism, despite stimulated mitochondria biogenesis. In addition, while palmitate did not induce increased cytokine expression, it modified the protein cargo of released extracellular vesicles (EVs). When administered intra-cerebroventricularly to mice, EVs secreted from palmitate-exposed microglia in vitro led to memory impairment, depression-like behavior, and glucose intolerance, when compared to mice receiving EVs from vehicle-treated microglia. We conclude that microglia exposed to palmitate can mediate brain dysfunction through the cargo of shed EVs.


Asunto(s)
Vesículas Extracelulares , Ratones Endogámicos C57BL , Microglía , Palmitatos , Animales , Microglía/efectos de los fármacos , Microglía/metabolismo , Ratones , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Palmitatos/toxicidad , Palmitatos/farmacología , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Dieta Alta en Grasa/efectos adversos , Citocinas/metabolismo
2.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636895

RESUMEN

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Asunto(s)
Neoplasias Encefálicas , Movimiento Celular , Proliferación Celular , Galectina 3 , Glioblastoma , Microglía , Microambiente Tumoral , Microglía/metabolismo , Microglía/patología , Galectina 3/metabolismo , Galectina 3/genética , Humanos , Animales , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Glioblastoma/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Línea Celular Tumoral , Femenino , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Invasividad Neoplásica , Proteínas Sanguíneas/metabolismo , Galectinas/metabolismo , Galectinas/genética , Transducción de Señal , Ratones , Regulación Neoplásica de la Expresión Génica
3.
Neuropathol Appl Neurobiol ; 50(1): e12962, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343067

RESUMEN

AIMS: According to Braak's hypothesis, it is plausible that Parkinson's disease (PD) originates in the enteric nervous system (ENS) and spreads to the brain through the vagus nerve. In this work, we studied whether inflammatory bowel diseases (IBDs) in humans can progress with the emergence of pathogenic α-synuclein (α-syn) in the gastrointestinal tract and midbrain dopaminergic neurons. METHODS: We have analysed the gut and the ventral midbrain from subjects previously diagnosed with IBD and form a DSS-based rat model of gut inflammation in terms of α-syn pathology. RESULTS: Our data support the existence of pathogenic α-syn in both the gut and the brain, thus reinforcing the potential role of the ENS as a contributing factor in PD aetiology. Additionally, we have analysed the effect of a DSS-based rat model of gut inflammation to demonstrate (i) the appearance of P-α-syn inclusions in both Auerbach's and Meissner's plexuses (gut), (ii) an increase in α-syn expression in the ventral mesencephalon (brain) and (iii) the degeneration of nigral dopaminergic neurons, which all are considered classical hallmarks in PD. CONCLUSION: These results strongly support the plausibility of Braak's hypothesis and emphasise the significance of peripheral inflammation and the gut-brain axis in initiating α-syn aggregation and transport to the substantia nigra, resulting in neurodegeneration.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Enfermedad de Parkinson , Humanos , Ratas , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/patología , Encéfalo/patología , Inflamación/patología , Neuronas Dopaminérgicas/metabolismo , Enfermedades Inflamatorias del Intestino/patología
4.
Alzheimers Dement ; 20(3): 1515-1526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38018380

RESUMEN

INTRODUCTION: Neuroinflammation is a major contributor to the progression of frontotemporal dementia (FTD). Galectin-3 (Gal-3), a microglial activation regulator, holds promise as a therapeutic target and potential biomarker. Our study aimed to investigate Gal-3 levels in patients with FTD and assess its diagnostic potential. METHODS: We examined Gal-3 levels in brain, serum, and cerebrospinal fluid (CSF) samples of patients with FTD and controls. Multiple linear regressions between Gal-3 levels and other FTD markers were explored. RESULTS: Gal-3 levels were increased significantly in patients with FTD, mainly across brain tissue and CSF, compared to controls. Remarkably, Gal-3 levels were higher in cases with tau pathology than TAR-DNA Binding Protein 43 (TDP-43) pathology. Only MAPT mutation carriers displayed increased Gal-3 levels in CSF samples, which correlated with total tau and 14-3-3. DISCUSSION: Our findings underscore the potential of Gal-3 as a diagnostic marker for FTD, particularly in MAPT cases, and highlights the relation of Gal-3 with neuronal injury markers.


Asunto(s)
Demencia Frontotemporal , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/diagnóstico , Galectina 3/genética , Galectina 3/metabolismo , Proteínas tau/líquido cefalorraquídeo , Encéfalo/patología , Biomarcadores/líquido cefalorraquídeo , Proteína C9orf72/genética , Mutación/genética
6.
BMJ Open ; 13(11): e076900, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38035737

RESUMEN

INTRODUCTION: Many depressed patients do not achieve remission with available treatments. Anhedonia is a common residual symptom associated with treatment resistance as well as low function and quality of life. There are currently no specific and effective treatments for anhedonia. Some trials have shown that dopamine agonist pramipexole is efficacious for treating depression, but more data is needed before it could become ready for clinical prime time. Given its mechanism of action, pramipexole might be a useful treatment for a depression subtype characterised by significant anhedonia and lack of motivation-symptoms associated with dopaminergic hypofunction. We recently showed, in an open-label pilot study, that add-on pramipexole is a feasible treatment for depression with significant anhedonia, and that pramipexole increases reward-related activity in the ventral striatum. We will now confirm or refute these preliminary results in a randomised controlled trial (RCT) and an open-label follow-up study. METHODS AND ANALYSIS: Eighty patients with major depression (bipolar or unipolar) or dysthymia and significant anhedonia according to the Snaith Hamilton Pleasure Scale (SHAPS) are randomised to either add-on pramipexole or placebo for 9 weeks. Change in anhedonia symptoms per the SHAPS is the primary outcome, and secondary outcomes include change in core depressive symptoms, apathy, sleep problems, life quality, anxiety and side effects. Accelerometers are used to assess treatment-associated changes in physical activity and sleep patterns. Blood and brain biomarkers are investigated as treatment predictors and to establish target engagement. After the RCT phase, patients continue with open-label treatment in a 6-month follow-up study aiming to assess long-term efficacy and tolerability of pramipexole. ETHICS AND DISSEMINATION: The study has been approved by the Swedish Ethical Review Authority and the Swedish Medical Products Agency. The study is externally monitored according to Good Clinical Practice guidelines. Results will be disseminated via conference presentations and peer-reviewed publications. TRIAL REGISTRATION NUMBER: NCT05355337 and NCT05825235.


Asunto(s)
Anhedonia , Depresión , Humanos , Pramipexol/uso terapéutico , Suecia , Depresión/tratamiento farmacológico , Estudios de Seguimiento , Ensayos Clínicos Controlados Aleatorios como Asunto
7.
Front Nutr ; 10: 1257472, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854349

RESUMEN

Our diets greatly influence our health. Multiple lines of research highlight the beneficial properties of eating berries and fruits. In this study, a berry mixture of Nordic berries previously identified as having the potential to improve memory was supplemented to young C57Bl/6J male mice to investigate effects on cognition function, metabolic health, markers of neuroinflammation, and gut microbiota composition. C57Bl/6J male mice at the age of 8 weeks were given standard chow, a high-fat diet (HF, 60%E fat), or a high-fat diet supplemented with freeze-dried powder (20% dwb) of a mixture of Nordic berries and red grape juice (HF + Berry) for 18 weeks (n = 12 animals/diet group). The results show that supplementation with the berry mixture may have beneficial effects on spatial memory, as seen by enhanced performance in the T-maze and Barnes maze compared to the mice receiving the high-fat diet without berries. Additionally, berry intake may aid in counteracting high-fat diet induced weight gain and could influence neuroinflammatory status as suggested by the increased levels of the inflammation modifying IL-10 cytokine in hippocampal extracts from berry supplemented mice. Furthermore, the 4.5-month feeding with diet containing berries resulted in significant changes in cecal microbiota composition. Analysis of cecal bacterial 16S rRNA revealed that the chow group had significantly higher microbial diversity, as measured by the Shannon diversity index and total operational taxonomic unit richness, than the HF group. The HF diet supplemented with berries resulted in a strong trend of higher total OTU richness and significantly increased the relative abundance of Akkermansia muciniphila, which has been linked to protective effects on cognitive decline. In conclusion, the results of this study suggest that intake of a Nordic berry mixture is a valuable strategy for maintaining and improving cognitive function, to be further evaluated in clinical trials.

8.
Brain Behav Immun ; 113: 228-247, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437821

RESUMEN

Microglia have an innate immunity memory (IIM) with divergent functions in different animal models of neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized by chronic neuroinflammation, neurodegeneration, tau tangles and ß-amyloid (Aß) deposition. Systemic inflammation has been implicated in contributing to the progression of AD. Multiple reports have demonstrated unique microglial signatures in AD mouse models and patients. However, the proteomic profiles of microglia modified by IIM have not been well-documented in an AD model. Therefore, in the present study, we investigate whether lipopolysaccharide (LPS)-induced IIM in the pre-clinical stage of AD alters the microglial responses and shapes the neuropathology. We accomplished this by priming 5xFAD and wild-type (WT) mice with an LPS injection at 6 weeks (before the robust development of plaques). 140 days later, we evaluated microglial morphology, activation, the microglial barrier around Aß, and Aß deposition in both 5xFAD primed and unprimed mice. Priming induced decreased soma size of microglia and reduced colocalization of PSD95 and Synaptophysin in the retrosplenial cortex. Priming appeared to increase phagocytosis of Aß, resulting in fewer Thioflavin S+ Aß fibrils in the dentate gyrus. RIPA-soluble Aß 40 and 42 were significantly reduced in Primed-5xFAD mice leading to a smaller size of MOAB2+ Aß plaques in the prefrontal cortex. We also found that Aß-associated microglia in the Primed-5xFAD mice were less activated and fewer in number. After priming, we also observed improved memory performance in 5xFAD. To further elucidate the molecular mechanism underlying these changes, we performed quantitative proteomic analysis of microglia and bone marrow monocytes. A specific pattern in the microglial proteome was revealed in primed 5xFAD mice. These results suggest that the imprint signatures of primed microglia display a distinctive phenotype and highlight the potential for a beneficial adaption of microglia when intervention occurs in the pre-clinical stage of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/patología , Lipopolisacáridos/farmacología , Microglía , Ratones Transgénicos , Proteómica , Péptidos beta-Amiloides , Modelos Animales de Enfermedad
10.
Acta Neuropathol ; 146(1): 51-75, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37202527

RESUMEN

Parkinson's Disease (PD) is a neurodegenerative and progressive disorder characterised by intracytoplasmic inclusions called Lewy bodies (LB) and degeneration of dopaminergic neurons in the substantia nigra (SN). Aggregated α-synuclein (αSYN) is known to be the main component of the LB. It has also been reported to interact with several proteins and organelles. Galectin-3 (GAL3) is known to have a detrimental function in neurodegenerative diseases. It is a galactose-binding protein without known catalytic activity and is expressed mainly by activated microglial cells in the central nervous system (CNS). GAL3 has been previously found in the outer layer of the LB in post-mortem brains. However, the role of GAL3 in PD is yet to be elucidated. In post-mortem samples, we identified an association between GAL3 and LB in all the PD subjects studied. GAL3 was linked to less αSYN in the LB outer layer and other αSYN deposits, including pale bodies. GAL3 was also associated with disrupted lysosomes. In vitro studies demonstrate that exogenous recombinant Gal3 is internalised by neuronal cell lines and primary neurons where it interacts with endogenous αSyn fibrils. In addition, aggregation experiments show that Gal3 affects spatial propagation and the stability of pre-formed αSyn fibrils resulting in short, amorphous toxic strains. To further investigate these observations in vivo, we take advantage of WT and Gal3KO mice subjected to intranigral injection of adenovirus overexpressing human αSyn as a PD model. In line with our in vitro studies, under these conditions, genetic deletion of GAL3 leads to increased intracellular αSyn accumulation within dopaminergic neurons and remarkably preserved dopaminergic integrity and motor function. Overall, our data suggest a prominent role for GAL3 in the aggregation process of αSYN and LB formation, leading to the production of short species to the detriment of larger strains which triggers neuronal degeneration in a mouse model of PD.


Asunto(s)
Galectina 3 , Enfermedad de Parkinson , Animales , Humanos , Ratones , alfa-Sinucleína/metabolismo , Neuronas Dopaminérgicas/metabolismo , Galectina 3/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo
11.
PLoS One ; 18(5): e0284480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37126506

RESUMEN

Microglial cells are brain-specific macrophages that swiftly react to disruptive events in the brain. Microglial activation leads to specific modifications, including proliferation, morphological changes, migration to the site of insult, and changes in gene expression profiles. A change in inflammatory status has been linked to many neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. For this reason, the investigation and quantification of microglial cells is essential for better understanding their role in disease progression as well as for evaluating the cytocompatibility of novel therapeutic approaches for such conditions. In the following study we implemented a machine learning-based approach for the fast and automatized quantification of microglial cells; this tool was compared with manual quantification (ground truth), and with alternative free-ware such as the threshold-based ImageJ and the machine learning-based Ilastik. We first trained the algorithms on brain tissue obtained from rats and non-human primate immunohistochemically labelled for microglia. Subsequently we validated the accuracy of the trained algorithms in a preclinical rodent model of Parkinson's disease and demonstrated the robustness of the algorithms on tissue obtained from mice, as well as from images provided by three collaborating laboratories. Our results indicate that machine learning algorithms can detect and quantify microglial cells in all the three mammalian species in a precise manner, equipotent to the one observed following manual counting. Using this tool, we were able to detect and quantify small changes between the hemispheres, suggesting the power and reliability of the algorithm. Such a tool will be very useful for investigation of microglial response in disease development, as well as in the investigation of compatible novel therapeutics targeting the brain. As all network weights and labelled training data are made available, together with our step-by-step user guide, we anticipate that many laboratories will implement machine learning-based quantification of microglial cells in their research.


Asunto(s)
Microglía , Enfermedad de Parkinson , Ratones , Ratas , Animales , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Reproducibilidad de los Resultados , Encéfalo , Primates , Aprendizaje Automático , Mamíferos
12.
Transl Neurodegener ; 12(1): 6, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740709

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a progressive multifaceted neurodegenerative disorder for which no disease-modifying treatment exists. Neuroinflammation is central to the pathology progression, with evidence suggesting that microglia-released galectin-3 (gal3) plays a pivotal role by amplifying neuroinflammation in AD. However, the possible involvement of gal3 in the disruption of neuronal network oscillations typical of AD remains unknown. METHODS: Here, we investigated the functional implications of gal3 signaling on experimentally induced gamma oscillations ex vivo (20-80 Hz) by performing electrophysiological recordings in the hippocampal CA3 area of wild-type (WT) mice and of the 5×FAD mouse model of AD. In addition, the recorded slices from WT mice under acute gal3 application were analyzed with RT-qPCR to detect expression of some neuroinflammation-related genes, and amyloid-ß (Aß) plaque load was quantified by immunostaining in the CA3 area of 6-month-old 5×FAD mice with or without Gal3 knockout (KO). RESULTS: Gal3 application decreased gamma oscillation power and rhythmicity in an activity-dependent manner, which was accompanied by impairment of cellular dynamics in fast-spiking interneurons (FSNs) and pyramidal cells. We found that the gal3-induced disruption was mediated by the gal3 carbohydrate-recognition domain and prevented by the gal3 inhibitor TD139, which also prevented Aß42-induced degradation of gamma oscillations. Furthermore, the 5×FAD mice lacking gal3 (5×FAD-Gal3KO) exhibited WT-like gamma network dynamics and decreased Aß plaque load. CONCLUSIONS: We report for the first time that gal3 impairs neuronal network dynamics by spike-phase uncoupling of FSNs, inducing a network performance collapse. Moreover, our findings suggest gal3 inhibition as a potential therapeutic strategy to counteract the neuronal network instability typical of AD and other neurological disorders encompassing neuroinflammation and cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Galectina 3/genética , Galectina 3/uso terapéutico , Ratones Transgénicos , Enfermedades Neuroinflamatorias , Péptidos beta-Amiloides/metabolismo , Interneuronas/metabolismo , Interneuronas/patología , Placa Amiloide
14.
Int J Bipolar Disord ; 10(1): 26, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36316595

RESUMEN

BACKGROUND: Physical activity has been proposed to be beneficial for the symptomatic control of bipolar disorder, but the duration of the effects, sex-specific mechanisms, and impact of exercise intensity are not known. METHOD: With an observational study design, we followed skiers and age and sex-matched non-skiers from the general population to investigate if participation in a long-distance cross-country ski race (Vasaloppet) was associated with a lower risk of getting diagnosed with bipolar disorder. Using the Swedish population and patient registries, skiers in Vasaloppet and age and sex-matched non-skiers from the general population were analyzed for any diagnosis of bipolar disorder after participation in the race. Additionally, we used finishing time of the ski race as a proxy for intensity levels to investigate if exercise intensity impacts the risk of bipolar disorder among the physically active skiers. RESULTS: Previous participation in a long distance ski race (n = 197,685, median age 36 years, 38% women) was associated with a lower incidence of newly diagnosed bipolar compared to an age and sex-matched general population (n = 197,684) during the up to 21 years follow-up (adjusted hazard ratio, HR = 0.48). The finishing time of the race did not significantly impact the risk of bipolar disorder in men. Among women, high performance (measured as the finishing time to complete the race, a proxy for higher exercise dose) was associated with an increased risk of bipolar disorder compared to slower skiing women (HR = 2.07). CONCLUSIONS: Our results confirm that a physically active lifestyle is associated with a lower risk of developing bipolar disorder. Yet, to elucidate the direction of causality in this relationship requires complementary study designs. And the influence of physical performance level on the risk of bipolar disorder warrants further examinations among women.

15.
Mol Neurodegener ; 17(1): 62, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153580

RESUMEN

ApoE is the major lipid and cholesterol carrier in the CNS. There are three major human polymorphisms, apoE2, apoE3, and apoE4, and the genetic expression of APOE4 is one of the most influential risk factors for the development of late-onset Alzheimer's disease (AD). Neuroinflammation has become the third hallmark of AD, together with Amyloid-ß plaques and neurofibrillary tangles of hyperphosphorylated aggregated tau protein. This review aims to broadly and extensively describe the differential aspects concerning apoE. Starting from the evolution of apoE to how APOE's single-nucleotide polymorphisms affect its structure, function, and involvement during health and disease. This review reflects on how APOE's polymorphisms impact critical aspects of AD pathology, such as the neuroinflammatory response, particularly the effect of APOE on astrocytic and microglial function and microglial dynamics, synaptic function, amyloid-ß load, tau pathology, autophagy, and cell-cell communication. We discuss influential factors affecting AD pathology combined with the APOE genotype, such as sex, age, diet, physical exercise, current therapies and clinical trials in the AD field. The impact of the APOE genotype in other neurodegenerative diseases characterized by overt inflammation, e.g., alpha- synucleinopathies and Parkinson's disease, traumatic brain injury, stroke, amyotrophic lateral sclerosis, and multiple sclerosis, is also addressed. Therefore, this review gathers the most relevant findings related to the APOE genotype up to date and its implications on AD and CNS pathologies to provide a deeper understanding of the knowledge in the APOE field.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E/metabolismo , Genotipo , Enfermedades Neurodegenerativas/genética , Placa Amiloide/patología , Proteínas tau/genética
16.
Front Aging Neurosci ; 14: 946297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928998

RESUMEN

Alzheimer's disease (AD) is increasingly seen as a disease of synapses and diverse evidence has implicated the amyloid-ß peptide (Aß) in synapse damage. The molecular and cellular mechanism(s) by which Aß and/or its precursor protein, the amyloid precursor protein (APP) can affect synapses remains unclear. Interestingly, early hyperexcitability has been described in human AD and mouse models of AD, which precedes later hypoactivity. Here we show that neurons in culture with either elevated levels of Aß or with human APP mutated to prevent Aß generation can both induce hyperactivity as detected by elevated calcium transient frequency and amplitude. Since homeostatic synaptic plasticity (HSP) mechanisms normally maintain a setpoint of activity, we examined whether HSP was altered in AD transgenic neurons. Using methods known to induce HSP, we demonstrate that APP protein levels are regulated by chronic modulation of activity and that AD transgenic neurons have an impaired adaptation of calcium transients to global changes in activity. Further, AD transgenic compared to WT neurons failed to adjust the length of their axon initial segments (AIS), an adaptation known to alter excitability. Thus, we show that both APP and Aß influence neuronal activity and that mechanisms of HSP are disrupted in primary neuron models of AD.

17.
Acta Neuropathol ; 144(5): 843-859, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35895141

RESUMEN

Galectin-3 (Gal-3) is a beta-galactosidase binding protein involved in microglial activation in the central nervous system (CNS). We previously demonstrated the crucial deleterious role of Gal-3 in microglial activation in Alzheimer's disease (AD). Under AD conditions, Gal-3 is primarily expressed by microglial cells clustered around Aß plaques in both human and mouse brain, and knocking out Gal-3 reduces AD pathology in AD-model mice. To further unravel the importance of Gal-3-associated inflammation in AD, we aimed to investigate the Gal-3 inflammatory response in the AD continuum. First, we measured Gal-3 levels in neocortical and hippocampal tissue from early-onset AD patients, including genetic and sporadic cases. We found that Gal-3 levels were significantly higher in both cortex and hippocampus in AD subjects. Immunohistochemistry revealed that Gal-3+ microglial cells were associated with amyloid plaques of a larger size and more irregular shape and with neurons containing tau-inclusions. We then analyzed the levels of Gal-3 in cerebrospinal fluid (CSF) from AD patients (n = 119) compared to control individuals (n = 36). CSF Gal-3 levels were elevated in AD patients compared to controls and more strongly correlated with tau (p-Tau181 and t-tau) and synaptic markers (GAP-43 and neurogranin) than with amyloid-ß. Lastly, principal component analysis (PCA) of AD biomarkers revealed that CSF Gal-3 clustered and associated with other CSF neuroinflammatory markers, including sTREM-2, GFAP, and YKL-40. This neuroinflammatory component was more highly expressed in the CSF from amyloid-ß positive (A+), CSF p-Tau181 positive (T+), and biomarker neurodegeneration positive/negative (N+/-) (A + T + N+/-) groups compared to the A + T-N- group. Overall, Gal-3 stands out as a key pathological biomarker of AD pathology that is measurable in CSF and, therefore, a potential target for disease-modifying therapies involving the neuroinflammatory response.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores/líquido cefalorraquídeo , Encéfalo/patología , Proteína 1 Similar a Quitinasa-3/metabolismo , Proteína GAP-43/metabolismo , Galectina 3 , Humanos , Ratones , Neurogranina , Placa Amiloide/patología , beta-Galactosidasa/metabolismo , Proteínas tau/metabolismo
18.
Cell Death Dis ; 13(7): 628, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859075

RESUMEN

The advent of high-throughput single-cell transcriptomic analysis of microglia has revealed different phenotypes that are inherently associated with disease conditions. A common feature of some of these activated phenotypes is the upregulation of galectin-3. Representative examples of these phenotypes include disease-associated microglia (DAM) and white-associated microglia (WAM), whose role(s) in neuroprotection/neurotoxicity is a matter of high interest in the microglia community. In this review, we summarise the main findings that demonstrate the ability of galectin-3 to interact with key pattern recognition receptors, including, among others, TLR4 and TREM2 and the importance of galectin-3 in the regulation of microglia activation. Finally, we discuss increasing evidence supporting the involvement of this lectin in the main neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, traumatic brain injury, and stroke.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Enfermedad de Alzheimer/genética , Galectina 3/genética , Humanos , Microglía
19.
Nanomedicine ; 43: 102563, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35504462

RESUMEN

Light microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution. To further investigate the applicability of sub-micron infrared microspectroscopy for biomedical applications, we analyzed the contribution of substrate chemistry to the infrared spectra acquired from individual neurons grown on various imaging substrates. To provide an example of correlative immunofluorescence/O-PTIR imaging, we used immunofluorescence to locate specific organelles for O-PTIR measurement, thus capturing molecular structures at the sub-cellular level directly in cells, which is not possible using traditional infrared microspectroscopy or immunofluorescence microscopy alone.


Asunto(s)
Espectrofotometría Infrarroja , Microscopía Fluorescente , Estructura Molecular , Espectrofotometría Infrarroja/métodos
20.
Neuroreport ; 33(6): 266-271, 2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35352699

RESUMEN

BACKGROUND: The tissue damage following a focal stroke causes an inflammatory response that is thought to aggravate the disease state. Galectin-3 is a proinflammatory molecule that has been shown to play a significant role in the inflammatory responses in brain diseases and following experimental stroke. In most animal experiments, young animals are used, although attempts are often made to model diseases that affect the elderly. Therefore, in this project, we intended to investigate the role of Galectin-3 in experimental stroke in older mice. METHODS: In this project, 24-month-old (aged) female mice were subjected to an experimental stroke (permanent middle cerebral artery occlusion) 7 days before sacrifice. We wanted to investigate whether the absence of the inflammatory protein Galectin-3 could affect motor phenotype, neuroinflammation and infarct size. Number of mice without Galectin-3 (Galectin-3 KO) = 9, number of wildtype controls of the same age = 6. RESULTS: In our aged female mice, we could not observe any significant differences between Galectin-3 KO and wildtype regarding the inclined plane test or cylinder test. We could not observe different infarct sizes between the two genotypes. In brain homogenates, we measured levels of 10 inflammatory cytokines, but we could not see any significant differences in any of them. CONCLUSION: In summary, it can be said that the absence of the inflammatory mediator Galectin-3 does not seem to have a strong poststroke effect in aged females. Unfortunately, we could not analyze these mice with immunohistochemistry, which limited our study.


Asunto(s)
Citocinas , Galectina 3 , Accidente Cerebrovascular , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Galectina 3/genética , Infarto de la Arteria Cerebral Media/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Accidente Cerebrovascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA