Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurobiol Dis ; 191: 106393, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154608

RESUMEN

Phosphodiesterase 2 A (PDE2A) is an enzyme involved in the homeostasis of cAMP and cGMP and is the most highly expressed PDE in human brain regions critical for socio-cognitive behavior. In cerebral cortex and hippocampus, PDE2A expression level is upregulated in Fmr1-KO mice, a model of the Fragile X Syndrome (FXS), the most common form of inherited intellectual disability (ID) and autism spectrum disorder (ASD). Indeed, PDE2A translation is negatively modulated by FMRP, whose functional absence causes FXS. While the pharmacological inhibition of PDE2A has been associated to its pro-cognitive role in normal animals and in models of ID and ASD, homozygous PDE2A mutations have been identified in patients affected by ID, ASD and epilepsy. To clarify this apparent paradox about the role of PDE2A in brain development, we characterized here Pde2a+/- mice (homozygote animals being not viable) at the behavioral, cellular, molecular and electrophysiological levels. Pde2a+/- females display a milder form of the disorder with reduced cognitive performance in adulthood, conversely males show severe socio-cognitive deficits throughout their life. In males, these phenotypes are associated with microglia activation, elevated glutathione levels and increased externalization of Glutamate receptor (GluR1) in CA1, producing reduced mGluR-dependent Long-term Depression. Overall, our results reveal molecular targets of the PDE2A-dependent pathway underlying socio-cognitive performance. These results clarify the mechanism of action of pro-cognitive drugs based on PDE2A inactivation, which have been shown to be promising therapeutic approaches for Alzheimer's disease, schizophrenia, FXS as well as other forms of ASD.


Asunto(s)
Trastorno del Espectro Autista , Síndrome del Cromosoma X Frágil , Animales , Femenino , Humanos , Masculino , Ratones , Cognición , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ratones Noqueados , Microglía/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo
2.
Front Neurosci ; 17: 1171895, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37188005

RESUMEN

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability (ID) and a primary genetic cause of autism spectrum disorder (ASD). FXS arises from the silencing of the FMR1 gene causing the lack of translation of its encoded protein, the Fragile X Messenger RibonucleoProtein (FMRP), an RNA-binding protein involved in translational control and in RNA transport along dendrites. Although a large effort during the last 20 years has been made to investigate the cellular roles of FMRP, no effective and specific therapeutic intervention is available to treat FXS. Many studies revealed a role for FMRP in shaping sensory circuits during developmental critical periods to affect proper neurodevelopment. Dendritic spine stability, branching and density abnormalities are part of the developmental delay observed in various FXS brain areas. In particular, cortical neuronal networks in FXS are hyper-responsive and hyperexcitable, making these circuits highly synchronous. Overall, these data suggest that the excitatory/inhibitory (E/I) balance in FXS neuronal circuitry is altered. However, not much is known about how interneuron populations contribute to the unbalanced E/I ratio in FXS even if their abnormal functioning has an impact on the behavioral deficits of patients and animal models affected by neurodevelopmental disorders. We revise here the key literature concerning the role of interneurons in FXS not only with the purpose to better understand the pathophysiology of this disorder, but also to explore new possible therapeutic applications to treat FXS and other forms of ASD or ID. Indeed, for instance, the re-introduction of functional interneurons in the diseased brains has been proposed as a promising therapeutic approach for neurological and psychiatric disorders.

3.
Mol Psychiatry ; 26(9): 4570-4582, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33414502

RESUMEN

Phosphodiesterases (PDEs) are enzymes involved in the homeostasis of both cAMP and cGMP. They are members of a family of proteins that includes 11 subfamilies with different substrate specificities. Their main function is to catalyze the hydrolysis of cAMP, cGMP, or both. cAMP and cGMP are two key second messengers that modulate a wide array of intracellular processes and neurobehavioral functions, including memory and cognition. Even if these enzymes are present in all tissues, we focused on those PDEs that are expressed in the brain. We took into consideration genetic variants in patients affected by neurodevelopmental disorders, phenotypes of animal models, and pharmacological effects of PDE inhibitors, a class of drugs in rapid evolution and increasing application to brain disorders. Collectively, these data indicate the potential of PDE modulators to treat neurodevelopmental diseases characterized by learning and memory impairment, alteration of behaviors associated with depression, and deficits in social interaction. Indeed, clinical trials are in progress to treat patients with Alzheimer's disease, schizophrenia, depression, and autism spectrum disorders. Among the most recent results, the application of some PDE inhibitors (PDE2A, PDE3, PDE4/4D, and PDE10A) to treat neurodevelopmental diseases, including autism spectrum disorders and intellectual disability, is a significant advance, since no specific therapies are available for these disorders that have a large prevalence. In addition, to highlight the role of several PDEs in normal and pathological neurodevelopment, we focused here on the deregulation of cAMP and/or cGMP in Down Syndrome, Fragile X Syndrome, Rett Syndrome, and intellectual disability associated with the CC2D1A gene.


Asunto(s)
Trastornos del Neurodesarrollo , Hidrolasas Diéster Fosfóricas , 3',5'-AMP Cíclico Fosfodiesterasas , Animales , AMP Cíclico , GMP Cíclico , Humanos , Trastornos del Neurodesarrollo/genética , Inhibidores de Fosfodiesterasa
4.
Genome Res ; 30(11): 1633-1642, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32973039

RESUMEN

To gain better insight into the dynamic interaction between cells and their environment, we developed the agonist-induced functional analysis and cell sorting (aiFACS) technique, which allows the simultaneous recording and sorting of cells in real-time according to their immediate and individual response to a stimulus. By modulating the aiFACS selection parameters, testing different developmental times, using various stimuli, and multiplying the analysis of readouts, it is possible to analyze cell populations of any normal or pathological tissue. The association of aiFACS with single-cell transcriptomics allows the construction of functional tissue cartography based on specific pharmacological responses of cells. As a proof of concept, we used aiFACS on the dissociated mouse brain, a highly heterogeneous tissue, enriching it in interneurons by stimulation with KCl or with AMPA, an agonist of the glutamate receptors, followed by sorting based on calcium levels. After AMPA stimulus, single-cell transcriptomics of these aiFACS-selected interneurons resulted in a nine-cluster classification. Furthermore, we used aiFACS on interneurons derived from the brain of the Fmr1-KO mouse, a rodent model of fragile X syndrome. We showed that these interneurons manifest a generalized defective response to AMPA compared with wild-type cells, affecting all the analyzed cell clusters at one specific postnatal developmental time.


Asunto(s)
Encéfalo/metabolismo , Separación Celular/métodos , Citometría de Flujo/métodos , Interneuronas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Encéfalo/citología , Agonistas de Aminoácidos Excitadores/farmacología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Técnicas de Inactivación de Genes , Interneuronas/efectos de los fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología
5.
Mol Ther Nucleic Acids ; 18: 546-553, 2019 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-31671347

RESUMEN

Fragile X-associated tremor ataxia syndrome (FXTAS) is a rare disorder associated to the presence of the fragile X premutation, a 55-200 CGG repeat expansion in the 5' UTR of the FMR1 gene. Two main neurological phenotypes have been described in carriers of the CGG premutation: (1) neurodevelopmental disorders characterized by anxiety, attention deficit hyperactivity disorder (ADHD), social deficits, or autism spectrum disorder (ASD); and (2) after 50 years old, the FXTAS phenotype. This neurodegenerative disorder is characterized by ataxia and a form of parkinsonism. The molecular pathology of this disorder is characterized by the presence of elevated levels of Fragile X Mental Retardation 1 (FMR1) mRNA, presence of a repeat-associated non-AUG (RAN) translated peptide, and FMR1 mRNA-containing nuclear inclusions. Whereas in the past FXTAS was mainly considered as a late-onset disorder, some phenotypes of patients and altered learning and memory behavior of a mouse model of FXTAS suggested that this disorder involves neurodevelopment. To better understand the physiopathological role of the increased levels of Fmr1 mRNA during neuronal differentiation, we used a small interfering RNA (siRNA) approach to reduce the abundance of this mRNA in cultured cortical neurons from the FXTAS mouse model. Morphological alterations of neurons were rescued by this approach. This cellular phenotype is associated to differentially expressed proteins that we identified by mass spectrometry analysis. Interestingly, phenotype rescue is also associated to the rescue of the abundance of 29 proteins that are involved in various pathways, which represent putative targets for early therapeutic approaches.

6.
Cereb Cortex ; 29(8): 3241-3252, 2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-30137253

RESUMEN

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in translational regulation of mRNAs that play key roles in synaptic morphology and plasticity. The functional absence of FMRP causes the fragile X syndrome (FXS), the most common form of inherited intellectual disability and the most common monogenic cause of autism. No effective treatment is available for FXS. We recently identified the Phosphodiesterase 2A (Pde2a) mRNA as a prominent target of FMRP. PDE2A enzymatic activity is increased in the brain of Fmr1-KO mice, a recognized model of FXS, leading to decreased levels of cAMP and cGMP. Here, we pharmacologically inhibited PDE2A in Fmr1-KO mice and observed a rescue both of the maturity of dendritic spines and of the exaggerated hippocampal mGluR-dependent long-term depression. Remarkably, PDE2A blockade rescued the social and communicative deficits of both mouse and rat Fmr1-KO animals. Importantly, chronic inhibition of PDE2A in newborn Fmr1-KO mice followed by a washout interval, resulted in the rescue of the altered social behavior observed in adolescent mice. Altogether, these results reveal the key role of PDE2A in the physiopathology of FXS and suggest that its pharmacological inhibition represents a novel therapeutic approach for FXS.


Asunto(s)
Comunicación Animal , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Espinas Dendríticas/efectos de los fármacos , Síndrome del Cromosoma X Frágil/enzimología , Hipocampo/efectos de los fármacos , Imidazoles/farmacología , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Neuronas/efectos de los fármacos , Inhibidores de Fosfodiesterasa/farmacología , Conducta Social , Triazinas/farmacología , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/antagonistas & inhibidores , Espinas Dendríticas/patología , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Síndrome del Cromosoma X Frágil/fisiopatología , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Cultivo Primario de Células , Ratas , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/metabolismo
7.
Front Mol Neurosci ; 11: 342, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319351

RESUMEN

Fragile X syndrome (FXS), the most common form of inherited intellectual disability (ID) and a leading cause of autism, results from the loss of expression of the Fmr1 gene which encodes the RNA-binding protein Fragile X Mental Retardation Protein (FMRP). Among the thousands mRNA targets of FMRP, numerous encode regulators of ion homeostasis. It has also been described that FMRP directly interacts with Ca2+ channels modulating their activity. Collectively these findings suggest that FMRP plays critical roles in Ca2+ homeostasis during nervous system development. We carried out a functional analysis of Ca2+ regulation using a calcium imaging approach in Fmr1-KO cultured neurons and we show that these cells display impaired steady state Ca2+ concentration and an altered entry of Ca2+ after KCl-triggered depolarization. Consistent with these data, we show that the protein product of the Cacna1a gene, the pore-forming subunit of the Cav2.1 channel, is less expressed at the plasma membrane of Fmr1-KO neurons compared to wild-type (WT). Thus, our findings point out the critical role that Cav2.1 plays in the altered Ca2+ flux in Fmr1-KO neurons, impacting Ca2+ homeostasis of these cells. Remarkably, we highlight a new phenotype of cultured Fmr1-KO neurons that can be considered a novel cellular biomarker and is amenable to small molecule screening and identification of new drugs to treat FXS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA