Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Blood ; 135(4): 269-273, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31697828

RESUMEN

Although acquisition of leukemia-associated somatic mutations by 1 or more hematopoietic stem cells is inevitable with advancing age, its consequences are highly variable, ranging from clinically silent clonal hematopoiesis (CH) to leukemic progression. To investigate the influence of heritable factors on CH, we performed deep targeted sequencing of blood DNA from 52 monozygotic (MZ) and 27 dizygotic (DZ) twin pairs (aged 70-99 years). Using this highly sensitive approach, we identified CH (variant allele frequency ≥0.5%) in 62% of individuals. We did not observe higher concordance for CH within MZ twin pairs as compared with that within DZ twin pairs, or to that expected by chance. However, we did identify 2 MZ pairs in which both twins harbored identical rare somatic mutations, suggesting a shared cell of origin. Finally, in 3 MZ twin pairs harboring mutations in the same driver genes, serial blood samples taken 4 to 5 years apart showed substantial twin-to-twin variability in clonal trajectories. Our findings propose that the inherited genome does not exert a dominant influence on the behavior of adult CH and provide evidence that CH mutations may be acquired in utero.


Asunto(s)
Hematopoyesis , Leucemia/genética , Mutación , Gemelos/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Enfermedades en Gemelos/genética , Femenino , Humanos , Masculino , Gemelos Dicigóticos/genética , Gemelos Monocigóticos/genética
3.
Mol Nutr Food Res ; 63(22): e1900226, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31432628

RESUMEN

SCOPE: Insulin resistance (IR) and inflammation are hallmarks of type 2 diabetes (T2D). The nod-like receptor pyrin domain containing-3 (NLRP3) inflammasome is a metabolic sensor activated by saturated fatty acids (SFA) initiating IL-1ß inflammation and IR. Interactions between SFA intake and NLRP3-related genetic variants may alter T2D risk factors. METHODS: Meta-analyses of six Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 19 005) tested interactions between SFA and NLRP3-related single-nucleotide polymorphisms (SNPs) and modulation of fasting insulin, fasting glucose, and homeostasis model assessment of insulin resistance. RESULTS: SFA interacted with rs12143966, wherein each 1% increase in SFA intake increased insulin by 0.0063 IU mL-1 (SE ± 0.002, p = 0.001) per each major (G) allele copy. rs4925663, interacted with SFA (ß ± SE = -0.0058 ± 0.002, p = 0.004) to increase insulin by 0.0058 IU mL-1 , per additional copy of the major (C) allele. Both associations are close to the significance threshold (p < 0.0001). rs4925663 causes a missense mutation affecting NLRP3 expression. CONCLUSION: Two NLRP3-related SNPs showed potential interaction with SFA to modulate fasting insulin. Greater dietary SFA intake accentuates T2D risk, which, subject to functional validation, may be further elaborated depending on NLRP3-related genetic variants.


Asunto(s)
Diabetes Mellitus Tipo 2/etiología , Grasas de la Dieta/administración & dosificación , Inflamasomas/genética , Resistencia a la Insulina , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Polimorfismo de Nucleótido Simple , Variación Genética , Humanos
4.
Mov Disord ; 34(7): 1049-1059, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31059154

RESUMEN

BACKGROUND: Progressive supranuclear palsy is a neurodegenerative tauopathy manifesting clinically as a progressive akinetic-rigid syndrome. In this study, we sought to identify genetic variants influencing PSP susceptibility through a genome-wide association analysis of a cohort of well-characterized patients who had participated in the Neuroprotection and Natural History in Parkinson Plus Syndromes and Blood Brain Barrier in Parkinson Plus Syndromes studies. METHODS: We genotyped single-nucleotide polymorphisms in 283 PSP cases from the United Kingdom, Germany, and France and compared these with genotypes from 4472 controls. Copy number variants were identified from genotyping data. RESULTS: We observed associations on chromosome 17 within or close to the MAPT gene and explored the genetic architecture at this locus. We confirmed the previously reported association of rs1768208 in the MOBP gene (P = 3.29 × 10-13 ) and rs1411478 in STX6 (P = 3.45 × 10-10 ). The population-attributable risk from the MAPT, MOBP, and STX6 single-nucleotide polymorphisms was found to be 0.37, 0.26, and 0.08, respectively. In addition, we found 2 instances of copy number variants spanning the MAPT gene in patients with PSP. These copy number variants include tau but few other genes within the chromosome 17 haplotype region, providing additional support for the direct pathogenicity of MAPT in PSP. CONCLUSIONS: Clinicians should also be aware of MAPT duplication as a possible genetic cause of PSP, especially in patients presenting with young age at onset. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genotipo , Parálisis Supranuclear Progresiva/genética , Proteínas tau/genética , Adulto , Edad de Inicio , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética
5.
Int J Mol Sci ; 20(5)2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30813608

RESUMEN

Epigenome-Wide Association Studies (EWAS) are furthering our knowledge of epigenetic modifications involved in the regulation of lipids' metabolism. Furthermore, epigenetic patterns associated with lipid levels may play an important role in predicting the occurrence of cardiovascular events. To further investigate the relationship between methylation status and lipids, we performed an EWAS in 211 individuals from the STANISLAS Family study (SFS). Methylation at two CpG sites (PRKAG2; p = 1.39 × 10-8; KREMEN2; p = 5.75 × 10-9) were significantly associated with lipidomic profiles. Replication was sought in adipose tissue where one probe, cg08897188, was found to be nominally significant (KREMEN2; p = 0.0196). These results could provide new insight in the mechanisms underlying cardiovascular diseases and contribute to new therapeutic interventions.


Asunto(s)
Epigénesis Genética , Estudio de Asociación del Genoma Completo , Lípidos/sangre , Tejido Adiposo/metabolismo , Biología Computacional , Islas de CpG/genética , Metilación de ADN/genética , Familia , Variación Genética , Humanos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
6.
J Pers Med ; 8(4)2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30545130

RESUMEN

The 9th traditional biannual conference on Systems Medicine, Personalised Health & Therapy-"The Odyssey from Hope to Practice", inspired by the Greek mythology, was a call to search for practical solutions in cardio-metabolic diseases and cancer, to resolve and overcome the obstacles in modern medicine by creating more interactions among disciplines, as well as between academic and industrial research, directed towards an effective 'roadmap' for personalised health and therapy. The 9th Santorini Conference, under the Presidency of Sofia Siest, the director of the INSERM U1122; IGE-PCV (www.u1122.inserm.fr), University of Lorraine, France, offered a rich and innovative scientific program. It gathered 34 worldwide distinguished speakers, who shared their passion for personalised medicine with 160 attendees in nine specific sessions on the following topics: First day: The Odyssey from hope to practice: Personalised medicine-landmarks and challenges Second day: Diseases to therapeutics-genotype to phenotype an "-OMICS" approach: focus on personalised therapy and precision medicine Third day: Gene-environment interactions and pharmacovigilance: a pharmacogenetics approach for deciphering disease "bench to clinic to reality" Fourth day: Pharmacogenomics to drug discovery: a big data approach and focus on clinical data and clinical practice. In this article we present the topics shared among the participants of the conference and we highlight the key messages.

7.
Mol Neurodegener ; 13(1): 41, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089514

RESUMEN

BACKGROUND: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease for which the genetic contribution is incompletely understood. METHODS: We conducted a joint analysis of 5,523,934 imputed SNPs in two newly-genotyped progressive supranuclear palsy cohorts, primarily derived from two clinical trials (Allon davunetide and NNIPPS riluzole trials in PSP) and a previously published genome-wide association study (GWAS), in total comprising 1646 cases and 10,662 controls of European ancestry. RESULTS: We identified 5 associated loci at a genome-wide significance threshold P < 5 × 10- 8, including replication of 3 loci from previous studies and 2 novel loci at 6p21.1 and 12p12.1 (near RUNX2 and SLCO1A2, respectively). At the 17q21.31 locus, stepwise regression analysis confirmed the presence of multiple independent loci (localized near MAPT and KANSL1). An additional 4 loci were highly suggestive of association (P < 1 × 10- 6). We analyzed the genetic correlation with multiple neurodegenerative diseases, and found that PSP had shared polygenic heritability with Parkinson's disease and amyotrophic lateral sclerosis. CONCLUSIONS: In total, we identified 6 additional significant or suggestive SNP associations with PSP, and discovered genetic overlap with other neurodegenerative diseases. These findings clarify the pathogenesis and genetic architecture of PSP.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Enfermedades Neurodegenerativas/genética , Parálisis Supranuclear Progresiva/genética , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Masculino , Polimorfismo de Nucleótido Simple
9.
PLoS One ; 12(11): e0186669, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29125842

RESUMEN

Recent genome-wide association studies have identified several single nucleotide polymorphisms (SNPs) associated with glucose levels. We tested the hypothesis here whether the cumulative effect of glucose raising SNPs, assessed via a score, is associated with glucose levels. A total of 1,434 participants of Greek descent from the THISEAS study and 1,160 participants form the GOMAP study were included in this analysis. We developed a genetic risk score (GRS), based on the known glucose-raising loci, in order to investigate the cumulative effect of known glucose loci on glucose levels. In the THISEAS study, the GRS score was significantly associated with increased glucose levels (mmol/L) (ß ± SE: 0.024 ± 0.004, P = 8.27e-07). The effect of the genetic risk score was also significant in the GOMAP study (ß ± SE: 0.011 ± 0.005, P = 0.031). In the meta-analysis of the two studies both scores were significantly associated with higher glucose levels GRS: ß ± SE: 0.019 ± 0.003, P = 1.41e-09. Also, variants at the SLC30A8, PROX1, MTNR1B, ADRA2A, G6PC2, LPIN3 loci indicated nominal evidence for association with glucose levels (p < 0.05). We replicate associations of the established glucose raising variants in the Greek population and confirm directional consistency of effects (binomial sign test p = 6.96e-05). We also demonstrate that the cumulative effect of the established glucose loci yielded a significant association with increasing glucose levels.


Asunto(s)
Glucemia/metabolismo , Estudio de Asociación del Genoma Completo , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Polimorfismo de Nucleótido Simple
10.
Front Pharmacol ; 8: 323, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28620303

RESUMEN

Genetic polymorphisms in the gene encoding cytochrome P450 (CYP) 4F2, a vitamin K oxidase, affect stable warfarin dose requirements and time to therapeutic INR. CYP4F2 is part of the CYP4F gene cluster, which is highly polymorphic and exhibits a high degree of linkage disequilibrium, making it difficult to define causal variants. Our objective was to examine the effect of genetic variability in the CYP4F gene cluster on expression of the individual CYP4F genes and warfarin response. mRNA levels of the CYP4F gene cluster were quantified in human liver samples (n = 149) obtained from a well-characterized liver bank and fine mapping of the CYP4F gene cluster encompassing CYP4F2, CYP4F11, and CYP4F12 was performed. Genome-wide association study (GWAS) data from a prospective cohort of warfarin-treated patients (n = 711) was also analyzed for genetic variations across the CYP4F gene cluster. In addition, SNP-gene expression in human liver tissues and interactions between CYP4F genes were explored in silico using publicly available data repositories. We found that SNPs in CYP4F2, CYP4F11, and CYP4F12 were associated with mRNA expression in the CYP4F gene cluster. In particular, CYP4F2 rs2108622 was associated with increased CYP4F2 expression while CYP4F11 rs1060467 was associated with decreased CYP4F2 expression. Interestingly, these CYP4F2 and CYP4F11 SNPs showed similar effects with warfarin stable dose where CYP4F11 rs1060467 was associated with a reduction in daily warfarin dose requirement (∼1 mg/day, Pc = 0.017), an effect opposite to that previously reported with CYP4F2 (rs2108622). However, inclusion of either or both of these SNPs in a pharmacogenetic algorithm consisting of age, body mass index (BMI), gender, baseline clotting factor II level, CYP2C9∗2 rs1799853, CYP2C9∗3 rs1057910, and VKORC1 rs9923231 improved warfarin dose variability only by 0.5-0.7% with an improvement in dose prediction accuracy of ∼1-2%. Although there is complex regulation across the CYP4F gene cluster, the opposing effects between the two SNPs in the CYP4F gene cluster appear to compensate for each other and their effect on warfarin dose requirement is unlikely to be clinically significant.

11.
Genome Biol ; 14(7): R75, 2013 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-23889843

RESUMEN

BACKGROUND: Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. RESULTS: Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. CONCLUSIONS: Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.


Asunto(s)
Tejido Adiposo/metabolismo , Envejecimiento/sangre , Envejecimiento/genética , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Piel/metabolismo , Adulto , Distribución por Edad , Anciano , Anciano de 80 o más Años , Línea Celular , Bases de Datos Genéticas , Femenino , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Transcripción Genética
12.
Hum Mol Genet ; 22(14): 2941-7, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23535823

RESUMEN

Abdominal aortic aneurysm (AAA) is a common human disease with a high estimated heritability (0.7); however, only a small number of associated genetic loci have been reported to date. In contrast, over 100 loci have now been reproducibly associated with either blood lipid profile and/or coronary artery disease (CAD) (both risk factors for AAA) in large-scale meta-analyses. This study employed a staged design to investigate whether the loci for these two phenotypes are also associated with AAA. Validated CAD and dyslipidaemia loci underwent screening using the Otago AAA genome-wide association data set. Putative associations underwent staged secondary validation in 10 additional cohorts. A novel association between the SORT1 (1p13.3) locus and AAA was identified. The rs599839 G allele, which has been previously associated with both dyslipidaemia and CAD, reached genome-wide significance in 11 combined independent cohorts (meta-analysis with 7048 AAA cases and 75 976 controls: G allele OR 0.81, 95% CI 0.76-0.85, P = 7.2 × 10(-14)). Modelling for confounding interactions of concurrent dyslipidaemia, heart disease and other risk factors suggested that this marker is an independent predictor of AAA susceptibility. In conclusion, a genetic marker associated with cardiovascular risk factors, and in particular concurrent vascular disease, appeared to independently contribute to susceptibility for AAA. Given the potential genetic overlap between risk factor and disease phenotypes, the use of well-characterized case-control cohorts allowing for modelling of cardiovascular disease risk confounders will be an important component in the future discovery of genetic markers for conditions such as AAA.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Aneurisma de la Aorta Abdominal/genética , Cromosomas Humanos Par 1/genética , Polimorfismo de Nucleótido Simple , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Persona de Mediana Edad
13.
Nat Genet ; 44(12): 1294-301, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23104008

RESUMEN

To further investigate susceptibility loci identified by genome-wide association studies, we genotyped 5,500 SNPs across 14 associated regions in 8,000 samples from a control group and 3 diseases: type 2 diabetes (T2D), coronary artery disease (CAD) and Graves' disease. We defined, using Bayes theorem, credible sets of SNPs that were 95% likely, based on posterior probability, to contain the causal disease-associated SNPs. In 3 of the 14 regions, TCF7L2 (T2D), CTLA4 (Graves' disease) and CDKN2A-CDKN2B (T2D), much of the posterior probability rested on a single SNP, and, in 4 other regions (CDKN2A-CDKN2B (CAD) and CDKAL1, FTO and HHEX (T2D)), the 95% sets were small, thereby excluding most SNPs as potentially causal. Very few SNPs in our credible sets had annotated functions, illustrating the limitations in understanding the mechanisms underlying susceptibility to common diseases. Our results also show the value of more detailed mapping to target sequences for functional studies.


Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedad de Graves/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Teorema de Bayes , Antígeno CTLA-4/genética , Quinasa 5 Dependiente de la Ciclina/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Genes p16 , Proteínas de Homeodominio/genética , Humanos , Polimorfismo de Nucleótido Simple , Proteínas/genética , Proteína 2 Similar al Factor de Transcripción 7/genética , Factores de Transcripción/genética , ARNt Metiltransferasas
14.
Nat Genet ; 44(3): 260-8, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22267201

RESUMEN

To newly identify loci for age at natural menopause, we carried out a meta-analysis of 22 genome-wide association studies (GWAS) in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 loci newly associated with age at natural menopause (at P < 5 × 10(-8)). Candidate genes located at these newly associated loci include genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG and PRIM1) and immune function (IL11, NLRP11 and PRRC2A (also known as BAT2)). Gene-set enrichment pathway analyses using the full GWAS data set identified exoDNase, NF-κB signaling and mitochondrial dysfunction as biological processes related to timing of menopause.


Asunto(s)
Reparación del ADN/genética , Sitios Genéticos/genética , Inmunidad/genética , Menopausia/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Edad , ADN Helicasas/genética , ADN Polimerasa gamma , ADN Primasa/genética , Enzimas Reparadoras del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Exodesoxirribonucleasas/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Menopausia/fisiología , Proteínas/genética , Población Blanca/genética
15.
Arterioscler Thromb Vasc Biol ; 30(11): 2264-76, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20864672

RESUMEN

OBJECTIVE: Genetic studies might provide new insights into the biological mechanisms underlying lipid metabolism and risk of CAD. We therefore conducted a genome-wide association study to identify novel genetic determinants of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. METHODS AND RESULTS: We combined genome-wide association data from 8 studies, comprising up to 17 723 participants with information on circulating lipid concentrations. We did independent replication studies in up to 37 774 participants from 8 populations and also in a population of Indian Asian descent. We also assessed the association between single-nucleotide polymorphisms (SNPs) at lipid loci and risk of CAD in up to 9 633 cases and 38 684 controls. We identified 4 novel genetic loci that showed reproducible associations with lipids (probability values, 1.6×10(-8) to 3.1×10(-10)). These include a potentially functional SNP in the SLC39A8 gene for HDL-C, an SNP near the MYLIP/GMPR and PPP1R3B genes for LDL-C, and at the AFF1 gene for triglycerides. SNPs showing strong statistical association with 1 or more lipid traits at the CELSR2, APOB, APOE-C1-C4-C2 cluster, LPL, ZNF259-APOA5-A4-C3-A1 cluster and TRIB1 loci were also associated with CAD risk (probability values, 1.1×10(-3) to 1.2×10(-9)). CONCLUSIONS: We have identified 4 novel loci associated with circulating lipids. We also show that in addition to those that are largely associated with LDL-C, genetic loci mainly associated with circulating triglycerides and HDL-C are also associated with risk of CAD. These findings potentially provide new insights into the biological mechanisms underlying lipid metabolism and CAD risk.


Asunto(s)
HDL-Colesterol/genética , LDL-Colesterol/genética , Enfermedad de la Arteria Coronaria/genética , Metabolismo de los Lípidos/genética , Triglicéridos/genética , Pueblo Asiatico , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Polimorfismo de Nucleótido Simple , Factores de Riesgo , Triglicéridos/sangre , Población Blanca
16.
Nat Genet ; 42(7): 604-7, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20543847

RESUMEN

We conducted a genome-wide association study for testicular germ cell tumor, genotyping 298,782 SNPs in 979 affected individuals and 4,947 controls from the UK and replicating associations in a further 664 cases and 3,456 controls. We identified three new susceptibility loci, two of which include genes that are involved in telomere regulation. We identified two independent signals within the TERT-CLPTM1L locus on chromosome 5, which has previously been associated with multiple other cancers (rs4635969, OR=1.54, P=1.14x10(-23); rs2736100, OR=1.33, P=7.55x10(-15)). We also identified a locus on chromosome 12 (rs2900333, OR=1.27, P=6.16x10(-10)) that contains ATF7IP, a regulator of TERT expression. Finally, we identified a locus on chromosome 9 (rs755383, OR=1.37, P=1.12x10(-23)), containing the sex determination gene DMRT1, which has been linked to teratoma susceptibility in mice.


Asunto(s)
Neoplasias de Células Germinales y Embrionarias/genética , Telomerasa/genética , Neoplasias Testiculares/genética , Factores de Transcripción/genética , Adulto , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Desequilibrio de Ligamiento , Modelos Logísticos , Masculino , Oportunidad Relativa , Polimorfismo de Nucleótido Simple , Proteínas Represoras , Factores de Riesgo , Adulto Joven
17.
BMC Bioinformatics ; 11: 280, 2010 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-20504309

RESUMEN

BACKGROUND: High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting application area for array-based technologies. In this paper, we explore several data sets which make use of Illumina's GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative expression measurements for alleles at approximately 1500 positions in the genome. RESULTS: We analyze data from a mixture experiment where genomic DNA samples from pairs of individuals of known genotypes are pooled to create allelic imbalances at varying levels for the majority of SNPs on the array. We observe that GoldenGate has less sensitivity at detecting subtle allelic imbalances (around 1.3 fold) compared to extreme imbalances, and note the benefit of applying local background correction to the data. Analysis of data from a dye-swap control experiment allowed us to quantify dye-bias, which can be reduced considerably by careful normalization. The need to filter the data before carrying out further downstream analysis to remove non-responding probes, which show either weak, or non-specific signal for each allele, was also demonstrated. Throughout this paper, we find that a linear model analysis of the data from each SNP is a flexible modelling strategy that allows for testing of allelic imbalances in each sample when replicate hybridizations are available. CONCLUSIONS: Our analysis shows that local background correction carried out by Illumina's software, together with quantile normalization of the red and green channels within each array, provides optimal performance in terms of false positive rates. In addition, we strongly encourage intensity-based filtering to remove SNPs which only measure non-specific signal. We anticipate that a similar analysis strategy will prove useful when quantifying ASE on Illumina's higher density Infinium BeadChips.


Asunto(s)
Alelos , Expresión Génica , Genómica/métodos , Estadística como Asunto/métodos , Bases de Datos Genéticas , Genoma , Análisis de Secuencia por Matrices de Oligonucleótidos , Polimorfismo de Nucleótido Simple
18.
Ann Intern Med ; 151(8): 528-37, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19841454

RESUMEN

BACKGROUND: Osteoporosis is a highly heritable trait. Many candidate genes have been proposed as being involved in regulating bone mineral density (BMD). Few of these findings have been replicated in independent studies. OBJECTIVE: To assess the relationship between BMD and fracture and all common single-nucleotide polymorphisms (SNPs) in previously proposed osteoporosis candidate genes. DESIGN: Large-scale meta-analysis of genome-wide association data. SETTING: 5 international, multicenter, population-based studies. PARTICIPANTS: Data on BMD were obtained from 19 195 participants (14 277 women) from 5 populations of European origin. Data on fracture were obtained from a prospective cohort (n = 5974) from the Netherlands. MEASUREMENTS: Systematic literature review using the Human Genome Epidemiology Navigator identified autosomal genes previously evaluated for association with osteoporosis. We explored the common SNPs arising from the haplotype map of the human genome (HapMap) across all these genes. BMD at the femoral neck and lumbar spine was measured by dual-energy x-ray absorptiometry. Fractures were defined as clinically apparent, site-specific, validated nonvertebral and vertebral low-energy fractures. RESULTS: 150 candidate genes were identified and 36 016 SNPs in these loci were assessed. SNPs from 9 gene loci (ESR1, LRP4, ITGA1, LRP5, SOST, SPP1, TNFRSF11A, TNFRSF11B, and TNFSF11) were associated with BMD at either site. For most genes, no SNP was statistically significant. For statistically significant SNPs (n = 241), effect sizes ranged from 0.04 to 0.18 SD per allele. SNPs from the LRP5, SOST, SPP1, and TNFRSF11A loci were significantly associated with fracture risk; odds ratios ranged from 1.13 to 1.43 per allele. These effects on fracture were partially independent of BMD at SPP1 and SOST. LIMITATION: Only common polymorphisms in linkage disequilibrium with SNPs in HapMap could be assessed, and previously reported associations for SNPs in some candidate genes could not be excluded. CONCLUSION: In this large-scale collaborative genome-wide meta-analysis, 9 of 150 candidate genes were associated with regulation of BMD, 4 of which also significantly affected risk for fracture. However, most candidate genes had no consistent association with BMD.


Asunto(s)
Densidad Ósea/genética , Fracturas Óseas/genética , Osteoporosis/genética , Polimorfismo de Nucleótido Simple , Femenino , Fracturas Óseas/etiología , Genotipo , Humanos , Desequilibrio de Ligamiento , Masculino , Osteoporosis/complicaciones , Estudios Prospectivos , Factores de Riesgo
19.
Nat Genet ; 41(11): 1199-206, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19801982

RESUMEN

Bone mineral density (BMD) is a heritable complex trait used in the clinical diagnosis of osteoporosis and the assessment of fracture risk. We performed meta-analysis of five genome-wide association studies of femoral neck and lumbar spine BMD in 19,195 subjects of Northern European descent. We identified 20 BMD loci that reached genome-wide significance (GWS; P < 5 x 10(-8)), of which 13 map to regions not previously associated with this trait: 1p31.3 (GPR177), 2p21 (SPTBN1), 3p22 (CTNNB1), 4q21.1 (MEPE), 5q14 (MEF2C), 7p14 (STARD3NL), 7q21.3 (FLJ42280), 11p11.2 (LRP4, ARHGAP1, F2), 11p14.1 (DCDC5), 11p15 (SOX6), 16q24 (FOXL1), 17q21 (HDAC5) and 17q12 (CRHR1). The meta-analysis also confirmed at GWS level seven known BMD loci on 1p36 (ZBTB40), 6q25 (ESR1), 8q24 (TNFRSF11B), 11q13.4 (LRP5), 12q13 (SP7), 13q14 (TNFSF11) and 18q21 (TNFRSF11A). The many SNPs associated with BMD map to genes in signaling pathways with relevance to bone metabolism and highlight the complex genetic architecture that underlies osteoporosis and variation in BMD.


Asunto(s)
Densidad Ósea/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Fémur/fisiología , Fracturas Óseas/genética , Regulación de la Expresión Génica , Genotipo , Humanos , Vértebras Lumbares/fisiología , Sitios de Carácter Cuantitativo , Factores de Riesgo , Población Blanca/genética
20.
Nat Genet ; 41(7): 807-10, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19483681

RESUMEN

We conducted a genome-wide association study for testicular germ cell tumor (TGCT), genotyping 307,666 SNPs in 730 cases and 1,435 controls from the UK and replicating associations in a further 571 cases and 1,806 controls. We found strong evidence for susceptibility loci on chromosome 5 (per allele OR = 1.37 (95% CI = 1.19-1.58), P = 3 x 10(-13)), chromosome 6 (OR = 1.50 (95% CI = 1.28-1.75), P = 10(-13)) and chromosome 12 (OR = 2.55 (95% CI = 2.05-3.19), P = 10(-31)). KITLG, encoding the ligand for the receptor tyrosine kinase KIT, which has previously been implicated in the pathogenesis of TGCT and the biology of germ cells, may explain the association on chromosome 12.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias Testiculares/genética , Estudios de Casos y Controles , Cromosomas Humanos Par 12 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 6 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Factor de Células Madre/genética , Reino Unido , Proteína Destructora del Antagonista Homólogo bcl-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA