Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Anal Methods ; 16(15): 2278-2285, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38525815

RESUMEN

Sterols are unsaponifiable lipids resulting from plant metabolism that exhibit interesting bioactive properties. Microalgae are a major source of specific phytosterols, most of which are still not fully characterized. The similarity in sterol structures and the existence of positional isomers make the separation of phytosterols challenging. A method was developed based on an offline two-dimensional (2D) system, reversed-phase liquid chromatography (RPLC)-supercritical fluid chromatography (SFC)/quadrupole time-of-flight (Q-ToF) mass spectrometry, for the identification of sterols in microalgae. Subsequent positive-mode MS/MS was used to confirm the identified phytosterols. The 2D chromatogram exhibited a pattern related to the positions of the double bonds, which were confirmed by standard injection, enabling structural elucidation. The analysis of the unsaponifiable fraction of two algae, namely Scenedesmus obliquus, a freshwater microalgae, and Padina pavonica, a marine macroalgae, highlighted the ability of the method to distinguish a large number of sterol isomers.


Asunto(s)
Cromatografía con Fluido Supercrítico , Microalgas , Fitosteroles , Cromatografía de Fase Inversa/métodos , Fitosteroles/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía con Fluido Supercrítico/métodos , Esteroles , Plantas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38438644

RESUMEN

The potential success of microalgal biofuels greatly depends on the sustainability of the chosen pathway to produce them. Hydrothermal liquefaction (HTL) is a promising route to convert wet algal biomass into biocrude. Recycling the resulting HTL aqueous phase (AP) aims not only to recover nutrients from this effluent but also to use it as a substrate to close the photosynthetic loop and produce algal biomass again and process this biomass again into new biocrude. With that purpose, the response to AP recycling of five Chlorellaceae strains was monitored over five cultivation cycles. After four successive cycles of dynamic growth under nutrient-replete conditions, the microalgae were cultivated for a prolonged fifth cycle of 18 days in order to assess the impact of the AP on lipid and biomass accumulation under nutrient-limited conditions. Using AP as a substrate reduced the demand for external sources of N, S, and P while producing a significant amount of biomass (2.95-4.27 g/L) among the strains, with a lipid content ranging from 16 to 36%. However, the presence of the AP resulted in biomass with suboptimal properties, as it slowed down the accumulation of lipids and thus reduced the overall energy content of the biomass in all strains. Although Chlorella vulgaris NIES 227 did not have the best growth on AP, it did maintain the best lipid productivity of all the tested strains. Understanding the impact of AP on microalgal cultivation is essential for further optimizing biofuel production via the HTL process.

3.
Bioresour Technol ; 371: 128631, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36646358

RESUMEN

Hydrothermal liquefaction (HTL) produces bio-crude oil from wet algae along with an aqueous phase (AP). This effluent contains minerals that can be reused for cultivating new microalgae but whose utility remains limited due to the presence of inhibitors. Reduced photosynthetic performance, growth, and null lipid accumulation were observed in wild-type Chlorella vulgaris NIES 227 cultivated in AP (1/200). Adaptive laboratory evolution was studied by batch transfers and turbidostat mode. Both methods effectively counterbalanced AP toxicity and restored the fitness of the microalgae. After adaptation, a higher AP addition was achieved, from 1/600 to 1/200, without inhibition. As compared with the wild typein control medium (0.261 g/L/d), both adapted-strains maintained competitive productivity (0.310 and 0.258 g/L/d) of lipid-rich biomass (37 %-56 %). The improved tolerance of the adapted strains persisted after the removal of AP and under axenic conditions. Adaptive laboratory evolution is suggested for AP reutilization in the algae production process.


Asunto(s)
Chlorella vulgaris , Microalgas , Temperatura , Biocombustibles , Agua , Biomasa , Aceites de Plantas
4.
Carbohydr Polym ; 208: 142-151, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30658785

RESUMEN

Microalgae were considered in this work as a new resource for developing starch-based bioplastics. Ten green microalgae strains were screened at lab-scale for their ability to produce starch. A long run (800 h) two-stage accumulation strategy was designed with successive cultivation in sulfur-replete, then sulfur-depleted medium in autotrophic conditions. Starch content was assessed on cell lysate by enzymatic digestion of extracted starch into glucose. Chlamydomonas reinhardtii 11-32A strain was selected as it displayed a maximum starch-to-biomass ratio of 49%w/w, 460 h after being switched to a sulfur-deprived medium. Small-scale pilot production (30 L tubular photobioreactor) with C. reinhardtii 11-32A yielded sufficient biomass quantity to investigate its direct plasticization with glycerol in a twin-screw extruder. Microstructural characterization confirmed the ability for starch-enriched microalgae to be homogeneously plasticized, and hence the possibility to use microalgae as a new platform for the development of bioplastics.

5.
Bioresour Technol ; 164: 347-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24874875

RESUMEN

This study aims at comparing the steam gasification behaviour of two species of algal biomass (Chlamydomonas reinhardtii and Arthrospira platensis) and three species of lignocellulosic biomass (miscanthus, beech and wheat straw). Isothermal experiments were carried out in a thermobalance under chemical regime. Samples had very different contents in inorganic elements, which resulted in different reactivities, with about a factor of 5 between samples. For biomasses with ratio between potassium content and phosphorus and silicon content K/(Si+P) higher than one, the reaction rate was constant during most of the reaction and then slightly increased at high conversion. On the contrary, for biomasses with ratio K/(Si+P) lower than one, the reaction rate decreased along conversion. A simple kinetic model was proposed to predict these behaviours.


Asunto(s)
Biomasa , Chlamydomonas/metabolismo , Gases/química , Compuestos Inorgánicos/farmacología , Lignina/química , Spirulina/metabolismo , Vapor , Chlamydomonas/efectos de los fármacos , Cinética , Modelos Teóricos , Spirulina/efectos de los fármacos , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA