Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cancer Ther ; 23(4): 541-551, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38354416

RESUMEN

Although microtubule inhibitors (MTI) remain a therapeutically valuable payload option for antibody-drug conjugates (ADC), some cancers do not respond to MTI-based ADCs. Efforts to fill this therapeutic gap have led to a recent expansion of the ADC payload "toolbox" to include payloads with novel mechanisms of action such as topoisomerase inhibition and DNA cross-linking. We present here the development of a novel DNA mono-alkylator ADC platform that exhibits sustained tumor growth suppression at single doses in MTI-resistant tumors and is well tolerated in the rat upon repeat dosing. A phosphoramidate prodrug of the payload enables low ADC aggregation even at drug-to-antibody ratios of 5:1 while still delivering a bystander-capable payload that is effective in multidrug resistant (MDR)-overexpressing cell lines. The platform was comparable in xenograft studies to the clinical benchmark DNA mono-alkylator ADC platform DGN459 but with a significantly better tolerability profile in rats. Thus, the activity and tolerability profile of this new platform make it a viable option for the development of ADCs.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Ratas , Animales , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Alquilantes , Neoplasias/tratamiento farmacológico , ADN/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología
2.
Bioorg Med Chem Lett ; 72: 128876, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35788036

RESUMEN

Pyrrolobenzodiazepine (PBD) dimers are well-known highly potent antibody drug conjugate (ADC) payloads. The corresponding PBD monomers, in contrast, have received much less attention from the ADC community. We prepared several novel polyamide-linked PBD monomers and evaluated their utility as ADC payloads. The unconjugated polyamide-PBD hybrids exhibited potent antiproliferative activity (IC50 range: 10-11-10-8 M) against a variety of HER2-expressing cancer cell lines. Several peptide-linked variants of the lead compound were prepared and conjugated to trastuzumab to afford ADCs with drug-to-antibody (DAR) ratios ranging from 3 to 5. The ADCs exhibited antigen-dependent cytotoxicity in vitro and potently suppressed tumor xenograft growth in vivo in a target-dependent manner. Moreover, the ADCs were well-tolerated in both mouse and rat. This work demonstrates for the first time that PBD polyamide hybrids can serve as effective ADC payloads.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Animales , Antineoplásicos/farmacología , Benzodiazepinas , Línea Celular Tumoral , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Ratones , Nylons/farmacología , Pirroles , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Mol Cancer Ther ; 20(5): 896-905, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33722858

RESUMEN

Target selection for antibody-drug conjugates (ADC) frequently focuses on identifying antigens with differential expression in tumor and normal tissue, to mitigate the risk of on-target toxicity. However, this strategy restricts the possible target space. SLC34A2/NaPi2b is a sodium phosphate transporter expressed in a variety of human tumors including lung and ovarian carcinoma, as well as the normal tissues from which these tumors arise. Previous clinical trials with a NaPi2b targeting MMAE-ADCs have shown objective durable responses. However, the protein-based biomarker assay developed for use in that study was unable to discern a statistically significant relationship between NaPi2b protein expression and the probability of response. XMT-1536 is a NaPi2b targeting ADC comprised of a unique humanized antibody conjugated with 10-15 auristatin F- hydroxypropylamide (AF-HPA) payload molecules via the Dolaflexin platform. AF-HPA is a cell-permeable, antimitotic compound that is slowly metabolized intratumorally to an active, very low-permeable metabolite, auristatin F (AF), resulting in controlled bystander killing. We describe the preclinical in vitro and in vivo antitumor effects of XMT-1536 in models of ovarian and lung adenocarcinoma. Pharmacokinetic analysis showed approximately proportional increases in exposure in rat and monkey. Systemic free AF-HPA and AF concentrations were observed to be low in all animal species. Finally, we describe a unique IHC reagent, generated from a chimeric construct of the therapeutic antibody, that was used to derive a target expression and efficacy relationship in a series of ovarian primary xenograft cancer models.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Inmunoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Oligopéptidos/uso terapéutico , Polímeros/uso terapéutico , Animales , Femenino , Humanos , Inmunoconjugados/farmacología , Ratones , Ratones SCID , Oligopéptidos/farmacología , Polímeros/farmacología
4.
Brain Res ; 1446: 1-11, 2012 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-22364637

RESUMEN

Cellular stress or injury can result in mitochondrial dysfunction, which has been linked to many chronic neurological disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Stressed and dysfunctional mitochondria exhibit an increase in large conductance mitochondrial membrane currents and a decrease in bioenergetic efficiency. Inefficient energy production puts cells, and particularly neurons, at risk of death when energy demands exceed cellular energy production. Here we show that the candidate ALS drug dexpramipexole (DEX; KNS-760704; ((6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) and cyclosporine A (CSA) inhibited increases in ion conductance in whole rat brain-derived mitochondria induced by calcium or treatment with a proteasome inhibitor, although only CSA inhibited calcium-induced permeability transition in liver-derived mitochondria. In several cell lines, including cortical neurons in culture, DEX significantly decreased oxygen consumption while maintaining or increasing production of adenosine triphosphate (ATP). DEX also normalized the metabolic profile of injured cells and was protective against the cytotoxic effects of proteasome inhibition. These data indicate that DEX increases the efficiency of oxidative phosphorylation, possibly by inhibition of a CSA-sensitive mitochondrial conductance.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/ultraestructura , Propranolol/farmacología , Adenosina Trifosfato/metabolismo , Análisis de Varianza , Animales , Fenómenos Biofísicos/efectos de los fármacos , Encéfalo/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Ciclosporina/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Humanos , Masculino , Ratones , Membranas Mitocondriales/efectos de los fármacos , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Oligopéptidos/farmacología , Consumo de Oxígeno/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
5.
Drug Metab Dispos ; 31(7): 932-7, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12814971

RESUMEN

It has been shown that administration of cigarette smoke to rats leads to loss of neuronal nitric-oxide synthase (nNOS) activity and nNOS protein in penile tissue. The exact mechanism for this loss of activity and protein is not known. In the current study, we investigated whether extracts prepared from cigarette smoke or from the cigarette itself could directly inhibit nNOS activity. We discovered that the cigarette smoke extract and the cigarette extract cause a time-, concentration-, and calmodulin-dependent inactivation of nNOS in an in vitro system containing the purified enzyme. L-Arginine, but not D-arginine, protects nNOS from this time-dependent inactivation, suggesting an active site directed event. The kinetics of inactivation are consistent with the metabolism-based or suicide inactivation of nNOS. Based on studies with other metabolism-based inactivators, this cigarette-mediated inactivation may render nNOS more susceptible to proteasomal degradation and thereby may explain the loss of nNOS protein in vivo. The component(s) responsible for nNOS inactivation is not volatile, is not retained by a 3,000 molecular weight cut-off membrane, binds to activated charcoal, and is highly water-soluble under both acidic and basic conditions. The discovery of a direct inactivation of nNOS by an organic, cationic compound(s) present in tobacco and tobacco smoke provides a basis for further study of not only the mechanisms responsible for the biological effects of tobacco but also a search for a potentially novel inactivator of nNOS.


Asunto(s)
Arginina/análogos & derivados , Nicotiana/química , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Humo/análisis , Arginina/metabolismo , Calmodulina/metabolismo , Inhibidores Enzimáticos/metabolismo , NADP/metabolismo , Óxido Nítrico Sintasa/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I , Óxido Nítrico Sintasa de Tipo III , Solubilidad , Agua/análisis , Agua/farmacología
6.
Mol Pharmacol ; 62(1): 110-8, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12065761

RESUMEN

It is established that N(G)-amino-L-arginine (NAA) is a metabolism-based inactivator of all three major nitric-oxide synthase (NOS) isoforms. The mechanism by which this inactivation occurs, however, is not well understood. In the current study, we discovered that inactivation of the neuronal isoform of NOS (nNOS) by NAA in vitro results in covalent alteration of the heme prosthetic group, in part, to products that contain an intact porphyrin ring and are either dissociable from or irreversibly bound to the protein. The alteration of the heme is concomitant with the loss of nNOS activity. Studies with nNOS containing a 14C-labeled prosthetic heme moiety indicate that the major dissociable product and the irreversibly bound heme adduct account for 21 and 28%, respectively, of the heme that is altered. Mass spectral analysis of the major dissociable product gave a molecular ion of m/z 775.3 that is consistent with the mass of an adduct of heme and NAA minus a hydrazine group. Peptide mapping of the irreversibly bound heme adduct indicates that the heme is bound to a residue in the oxygenase domain of nNOS. We show for the first time that metabolism-based inactivation of nNOS occurs in vivo as highly similar heme products are formed. Because inactivation and alteration may trigger ubiquitination and proteasomal degradation of nNOS, NAA may be a useful biochemical tool for the study of these basic regulatory processes.


Asunto(s)
Arginina/análogos & derivados , Arginina/farmacología , Inhibidores Enzimáticos/farmacología , Hemo/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Animales , Células Cultivadas , Hemo/análisis , Humanos , Insectos , Óxido Nítrico Sintasa/genética , Óxido Nítrico Sintasa/metabolismo , Óxido Nítrico Sintasa de Tipo I , Ratas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA