Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Anticancer Res ; 42(10): 4689-4700, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36191998

RESUMEN

BACKGROUND/AIM: A growing body of research is contributing to the development of three-dimensional (3D) tissue models to close the gap between two-dimensional (2D) cell culture and animal models. Here, we report fundamental studies to confirm the modification of vascular endothelial (VE)-cadherin by a tumor microenvironment using 2D and 3D in vitro models of triple-negative breast cancer cells co-cultured with endothelial cells. MATERIALS AND METHODS: Breast cancer cells were cultivated as a monolayer (2D) on plates for 5 days or as microtumor spheroids (3D) with endothelial cells for up to 6 days. Phosphotyrosine-containing protein panels were analyzed in both cell types and upon co-culture. Microtumor spheroid size was evaluated via phase contrast microscopy. The content of VE-cadherin and phospho-VE-cadherin was determined. The effect of microtumor spheroid on the capillary network formed by endothelial cells was quantified by ImageJ Angiogenesis Analyzer. Sunitinib was used to determine drug efficacy in this model. RESULTS: The activity of signaling pathways in endothelial cells, including phosphorylation of Y685-VE-cadherin, was increased by the presence of breast cancer cells. In the 3D co-culture system, we established a ratio of the two cell types which allowed viability for 6 days. As a proof-of-concept of the 3D co-culture system for the process of drug discovery and development, we used the system to quantify the efficacy of sunitinib on the phosphorylation of VE-cadherin. CONCLUSION: In summary, we established 2D and 3D breast cancer-endothelial cell test systems compatible for detection of minimally tyrosine-phosphorylated proteins including VE-cadherin. The systems are capable of quantifying the effect of drugs on a tissue model of angiogenesis. This is a step towards developing tools for drug-efficacy testing that do not rely on live animals.


Asunto(s)
Cadherinas , Células Endoteliales , Animales , Antígenos CD , Cadherinas/metabolismo , Células Cultivadas , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Neovascularización Patológica/metabolismo , Fosforilación , Fosfotirosina/metabolismo , Sunitinib/farmacología , Tirosina/metabolismo
2.
Biotechnol J ; 13(12): e1800463, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30457706

RESUMEN

A major problem for the detection of cancer biomarkers in plasma or serum is that common clinical practice does not require the patient to be in a fasting state. Considering that lipoproteins are the main population affected by food intake, the authors hypothesized that biomarkers could be embedded in lipid particles and thereby opens a new avenue for detection. Using the recently published biomarker, soluble VE-cadherin (sVE), the authors tested our hypothesis using techniques of biophysics, biochemistry and the tools of nanobiotechnology on serum samples from kidney cancer patients (n = 106). Optical density as well as contact angle measurements of serum revealed heterogeneity in the particle content of the serum samples. Isolation of the lipidic moieties by ultracentrifugation showed that sVE was detected in this compartment. Further, isolation of lipoprotein subclasses by precipitation with sodium phosphotungstate and MgCl2 , showed that HDL carried the majority of sVE. Immunoprecipitation of sVE confirmed that it was associated with Apolipoprotein A1, a major compound of HDL. Using a biomimetic lipid bilayer membrane coupled with impedance spectroscopy the authors quantified, in real-time, that the sVE adsorbed to the lipid bilayer membrane without altering its structure. Taken together, these results show for the first time a direct interaction of a cancer biomarker with lipids. The authors anticipate these results to prompt fasting for future blood tests for large-scale studies in the biomarkers research field.


Asunto(s)
Biomarcadores de Tumor/sangre , Materiales Biomiméticos , Colesterol/sangre , Antígenos CD/sangre , Apolipoproteína A-I/sangre , Biotecnología , Cadherinas/sangre , Células HEK293 , Humanos , Inmunoprecipitación , Neoplasias Renales/sangre , Lipoproteínas/sangre , Modelos Teóricos , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA