Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Natl Cancer Inst ; 116(8): 1356-1365, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38702830

RESUMEN

BACKGROUND: TP53 alterations are common in certain pediatric cancers, making identification of putative germline variants through tumor genomic profiling crucial for disease management. METHODS: We analyzed TP53 alterations in 3123 tumors from 2788 pediatric patients sequenced using tumor-only or tumor-normal paired panels. Germline confirmatory testing was performed when indicated. Somatic and germline variants were classified based on published guidelines. RESULTS: In 248 tumors from 222 patients, 284 tier 1/2 TP53 sequence and small copy number variants were detected. Following germline classification, 86.6% of 142 unique variants were pathogenic or likely pathogenic. Confirmatory testing on 118 patients revealed germline TP53 variants in 28 of them (23 pathogenic or likely pathogenic and 5 of uncertain significance), suggesting a minimum Li-Fraumeni syndrome incidence of 0.8% (23/2788) in this cohort, 10.4% (23/222) in patients with TP53 variant-carrying tumors, and 19.5% (23/118) with available normal samples. About 25% (7/28) of patients with germline TP53 variants did not meet Li-Fraumeni syndrome diagnostic or testing criteria, while 20.9% (28/134) with confirmed or inferred somatic origins did. TP53 biallelic inactivation occurred in 75% of germline carrier tumors and was also prevalent in other groups, causing an elevated tumor-observed variant allelic fraction. Somatic evidence, however, including low variant allele fraction correctly identified only 27.8% (25/90) of patients with confirmed somatic TP53 variants. CONCLUSION: The high incidence and variable phenotype of Li-Fraumeni syndrome in this cohort highlights the importance of assessing germline status of TP53 variants identified in all pediatric tumors. Without clear somatic evidence, distinguishing somatic from germline origins is challenging. Classifying germline and somatic variants should follow appropriate guidelines.


Asunto(s)
Mutación de Línea Germinal , Síndrome de Li-Fraumeni , Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Niño , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/epidemiología , Neoplasias/genética , Neoplasias/epidemiología , Masculino , Femenino , Preescolar , Adolescente , Predisposición Genética a la Enfermedad , Variaciones en el Número de Copia de ADN , Pruebas Genéticas/métodos , Prevalencia , Lactante
3.
J Mol Diagn ; 26(3): 191-201, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38103590

RESUMEN

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Asunto(s)
Anemia Aplásica , Enfermedades de la Médula Ósea , Hemoglobinuria Paroxística , Humanos , Niño , Anemia Aplásica/diagnóstico , Anemia Aplásica/genética , Enfermedades de la Médula Ósea/diagnóstico , Enfermedades de la Médula Ósea/genética , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Variaciones en el Número de Copia de ADN/genética , Reproducibilidad de los Resultados , Hemoglobinuria Paroxística/diagnóstico , Hemoglobinuria Paroxística/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleótidos
4.
Artículo en Inglés | MEDLINE | ID: mdl-35232817

RESUMEN

Li-Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2-6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Neoplasias de la Mama , Síndrome de Li-Fraumeni , Proteína p53 Supresora de Tumor , Adulto , Neoplasias de la Mama/genética , Niño , Femenino , Duplicación de Gen/genética , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal/genética , Humanos , Síndrome de Li-Fraumeni/genética , Proteína p53 Supresora de Tumor/genética
5.
J Mol Diagn ; 24(3): 274-286, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065284

RESUMEN

Clinical exome sequencing (CES) aids in the diagnosis of rare genetic disorders. Herein, we report the molecular diagnostic yield and spectrum of genetic alterations contributing to disease in 700 pediatric cases analyzed at the Children's Hospital of Philadelphia. The overall diagnostic yield was 23%, with three cases having more than one molecular diagnosis and 2.6% having secondary/additional findings. A candidate gene finding was reported in another 8.4% of cases. The clinical indications with the highest diagnostic yield were neurodevelopmental disorders (including seizures), whereas immune- and oncology-related indications were negatively associated with molecular diagnosis. The rapid expansion of knowledge regarding the genome's role in human disease necessitates reanalysis of CES samples. To capture these new discoveries, a subset of cases (n = 240) underwent reanalysis, with an increase in diagnostic yield. We describe our experience reporting CES results in a pediatric setting, including reporting of secondary findings, reporting newly discovered genetic conditions, and revisiting negative test results. Finally, we highlight the challenges associated with implementing critical updates to the CES workflow. Although these updates are necessary, they demand an investment of time and resources from the laboratory. In summary, these data demonstrate the clinical utility of exome sequencing and reanalysis, while highlighting the critical considerations for continuous improvement of a CES test in a clinical laboratory.


Asunto(s)
Exoma , Patología Molecular , Niño , Exoma/genética , Humanos , Mutación , Enfermedades Raras/genética , Estudios Retrospectivos , Secuenciación del Exoma/métodos
6.
J Mol Diagn ; 21(1): 38-48, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30577886

RESUMEN

Clinical exome sequencing (CES) has a reported diagnostic yield of 20% to 30% for most clinical indications. The ongoing discovery of novel gene-disease and variant-disease associations are expected to increase the diagnostic yield of CES. Performing systematic reanalysis of previously nondiagnostic CES samples represents a significant challenge for clinical laboratories. Here, we present the results of a novel automated reanalysis methodology applied to 300 CES samples initially analyzed between June 2014 and September 2016. Application of our reanalysis methodology reduced reanalysis variant analysis burden by >93% and correctly captured 70 of 70 previously identified diagnostic variants among 60 samples with previously identified diagnoses. Notably, reanalysis of 240 initially nondiagnostic samples using information available on July 1, 2017, revealed 38 novel diagnoses, representing a 15.8% increase in diagnostic yield. Modeling monthly iterative reanalysis of 240 nondiagnostic samples revealed a diagnostic rate of 0.57% of samples per month. Modeling the workload required for monthly iterative reanalysis of nondiagnostic samples revealed a variant analysis burden of approximately 5 variants/month for proband-only and approximately 0.5 variants/month for trio samples. Approximately 45% of samples required evaluation during each monthly interval, and 61.3% of samples were reevaluated across three consecutive reanalyses. In sum, automated reanalysis methods can facilitate efficient reevaluation of nondiagnostic samples using up-to-date literature and can provide significant value to clinical laboratories.


Asunto(s)
Secuenciación del Exoma/métodos , ADN/genética , Exoma , Femenino , Pruebas Genéticas/métodos , Variación Genética , Humanos , Masculino
7.
Am J Med Genet A ; 176(9): 1890-1896, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30152016

RESUMEN

Xia-Gibbs syndrome (XGS) is a recently described neurodevelopmental disorder due to heterozygous loss-of-function AHDC1 mutations. XGS is characterized by global developmental delay, intellectual disability, hypotonia, and sleep abnormalities. Here we report the clinical phenotype of five of six individuals with XGS identified prospectively at the Children's Hospital of Philadelphia, a tertiary children's hospital in the USA. Although all five patients demonstrated common clinical features characterized by developmental delay and characteristic facial features, each of our patients showed unique clinical manifestations. Patient one had craniosynostosis; patient two had sensorineural hearing loss and bicuspid aortic valve; patient three had cutis aplasia; patient four had soft, loose skin; and patient five had a lipoma. Differential diagnoses considered for each patient were quite broad, and included craniosynostosis syndromes, connective tissue disorders, and mitochondrial disorders. Exome sequencing identified a heterozygous, de novo AHDC1 loss-of-function mutation in four of five patients; the remaining patient has a 357kb interstitial deletion of 1p36.11p35.3 including AHDC1. Although it remains unknown whether these unique clinical manifestations are rare symptoms of XGS, our findings indicate that the diagnosis of XGS should be considered even in individuals with additional non-neurological symptoms, as the clinical spectrum of XGS may involve such non-neurological manifestations. Adding to the growing literature on XGS, continued cohort studies are warranted in order to both characterize the clinical spectrum of XGS as well as determine standard of care for patients with this diagnosis.


Asunto(s)
Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Adulto , Alelos , Variación Biológica Poblacional , Niño , Preescolar , Facies , Femenino , Marcadores Genéticos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Hospitales Pediátricos , Humanos , Imagenología Tridimensional , Lactante , Masculino , Mutación , Evaluación de Síntomas , Síndrome , Tomografía Computarizada por Rayos X
8.
Am J Hum Genet ; 101(1): 139-148, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28686853

RESUMEN

We report 15 individuals with de novo pathogenic variants in WDR26. Eleven of the individuals carry loss-of-function mutations, and four harbor missense substitutions. These 15 individuals comprise ten females and five males, and all have intellectual disability with delayed speech, a history of febrile and/or non-febrile seizures, and a wide-based, spastic, and/or stiff-legged gait. These subjects share a set of common facial features that include a prominent maxilla and upper lip that readily reveal the upper gingiva, widely spaced teeth, and a broad nasal tip. Together, these features comprise a recognizable facial phenotype. We compared these features with those of chromosome 1q41q42 microdeletion syndrome, which typically contains WDR26, and noted that clinical features are consistent between the two subsets, suggesting that haploinsufficiency of WDR26 contributes to the pathology of 1q41q42 microdeletion syndrome. Consistent with this, WDR26 loss-of-function single-nucleotide mutations identified in these subjects lead to nonsense-mediated decay with subsequent reduction of RNA expression and protein levels. We derived a structural model of WDR26 and note that missense variants identified in these individuals localize to highly conserved residues of this WD-40-repeat-containing protein. Given that WDR26 mutations have been identified in ∼1 in 2,000 of subjects in our clinical cohorts and that WDR26 might be poorly annotated in exome variant-interpretation pipelines, we would anticipate that this disorder could be more common than currently appreciated.


Asunto(s)
Facies , Marcha/genética , Haploinsuficiencia/genética , Discapacidad Intelectual/genética , Proteínas/genética , Convulsiones/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Secuencia de Bases , Preescolar , Deleción Cromosómica , Femenino , Crecimiento y Desarrollo/genética , Humanos , Discapacidad Intelectual/complicaciones , Masculino , Mutación/genética , Proteínas/química , Estabilidad del ARN/genética , Convulsiones/complicaciones , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA