RESUMEN
Sorption-based atmospheric water harvesting (SAWH) has been proven to be a promising method to alleviate the impact of the water crisis on human activities. However, the low water-sorption capacity and sluggish ab/desorption kinetics of current SAWH materials make it difficult to achieve high daily water production. In this study, a photothermal porous sodium alginate-tannic acid-5/Fe3+@lithium chloride aerogel (SA-TA-5/Fe3+@LiCl) with macroporous structure (average pore diameter â¼43.67 µm) and high solar absorbance (â¼98.4 %) was fabricated via Fe3+-induced crosslinking and blackening methods. When it is employed for SAWH, moisture can enter the inner space of the aerogel and contact highly hygroscopic lithium chloride (LiCl) more easily via macroporous channels, resulting in the water uptake for the SA-TA-5/Fe3+@LiCl aerogel reaching approximately 1.229 g g-1 under dry conditions (relative humidity (RH) â¼ 45 %, 25 °C) after a short time (4 h) moisture absorption, and releasing as much as 97.7 % of the absorbed water under 1 sun irradiation within 2 h. As a proof of concept, it is estimated that the daily water yield of the fabricated SA-TA/Fe3+@LiCl aerogel can reach approximately 4.65 kg kg-1 in conditions close to the real outdoor environment (RH â¼ 45 %, 25 °C), which satisfies the daily minimum water consumption of two adults. This study demonstrates a novel strategy for developing advanced solar-driven SAWH materials with enhanced ab/desorption kinetics and efficient water sorption-desorption properties.
RESUMEN
High-quality solar evaporators with all-in-one design are highly desirable for vapor generation, but relevant research is scarce. In this study, a three-dimensional (3D) porous polypyrrole/polydopamine (PPY/PDA) structure was fabricated via a simple heating-assisted rapid oxidative polymerization method. The obtained evaporator has multiple features, and can simultaneously provide rapid water transport channels (average pore sizes â¼ 18.37 nm), low thermal conductivity (0.071 W m-1 K-1), high solar absorbance (97.08%), and good mechanical properties. When it is employed as an evaporator, the calculated water evaporation rate is approximately 2.12 kg m-2h-1, which is comparable to other reported 3D evaporators. Additionally, the evaporator displays great potential for purification toward various nonpotable water, as well as reliable pure water yields in an outdoor application (from 8:00 am to 5:00 pm, the evaporator can produce at least 13.95 L of drinkable water for a 1 m2 sample). We believe that the proposed strategy to fabricate all-in-one evaporators has great significance for scientific research and practical applications.
RESUMEN
Solar driven interfacial vapor generation is considered to be an effective strategy to alleviate the impact of water crisis on human activities. However, great efforts of researchers have been devoted to improving the solar steam generation efficiency, while less attention has been paid to the long-term stability of evaporators. Herein, we proposed a robust core-shell structured evaporator prepared by a simple fast curing assisted spray-coating method. Owing to the inherent superelasticity of melamine-formaldehyde (MF) sponge, the finely designed novel 3D core-shell structure, and the quick curing of branched polyethyleneimine (BPEI) and 5-pentaerythritol pentaacrylate (5Acl) induced special knot shaped photothermal coating, the as-obtained evaporator (CB/MF) performed well in vapor generation with a high water evaporation rate of 2.082 kg m-2 h-1 under 1 sun illumination, and the evaporation efficiency reached 123.5%, which is comparable to the state-of-the-art artificial solar evaporator. Even in strict application situations, such as long-term recycling testing for 40 h, 500 compression-release cycles (20%, 40% or 60%), sonication for 12 h, or shaking for 30 h, the water evaporation rate of the obtained evaporator remains at a high level of above 2.00 kg m-2 h-1. Additionally, the evaporator shows effective purification toward high-concentration brine, acid-base solutions, simulated seawater, dye wastewater, and heavy metal wastewater, as well as reliable pure water, providing an outdoor application. With the advantages of a high evaporation rate, stable long-term vapor generation, and effective purification toward various non-potable water sources, we believe that the fabricated core-shell structured CB/MF evaporator is a promising candidate for practical solar steam generation.