Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
J Agric Food Chem ; 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39485063

RESUMEN

The mass transport effect of aqueous micelles on antioxidants and oxidation products in emulsions may alter the rate, degree, and pathway of lipid oxidation. In this study, the dynamic mass transport of oxidation products and endogenous tocopherol during storage at different micelle concentrations was monitored by UV-vis spectrophotometry and high-performance liquid chromatography. Furthermore, the microlocalization of tocopherol in micelles was investigated using 1H nuclear magnetic resonance and nuclear Overhauser effect spectroscopy, fluorescence measurements, and molecular dynamics simulation. It was demonstrated that high-concentration micelles enhanced the emulsion stability by promoting the mass transport of hydroperoxides and endogenous antioxidants. The enhancement of micelles was a superposition effect of concentration, interaction sites, and binding force between tocopherols and Tween 20 molecules. Tween 20 concentration-induced favorable changes of microlocalization of tocopherol and dynamic mass transport demonstrated a new integrated perspective to control lipid oxidation.

2.
Food Chem ; 464(Pt 2): 141760, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39471561

RESUMEN

The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.

3.
MedComm (2020) ; 5(11): e742, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39465143

RESUMEN

Diabetic nephropathy (DN) is a frequent and costly complication of diabetes with limited understandings of mechanisms and therapies. Emerging evidence points to the important roles of interleukin-33 (IL-33) in acute kidney injury, yet its contribution to DN is still unclear. We here found a ubiquitous increase of IL-33 and its receptor (ST2) in murine models and patients with DN. Surprisingly, both IL-33 and ST2 knockdown aggravated renal lesions in DN, while overexpression of IL-33 also exacerbated the condition. Further population-based analyses revealed a positive correlation of IL-33 expression with renal dysfunction in DN patients. Individuals with high IL-33 expression-related polygenic risk score had a higher DN risk. These findings confirmed the harmful effects of IL-33 on DN. Conversely, endogenous and exogenous partial reduction of IL-33 signaling conferred renoprotective effects in vivo and in vitro. Mechanistically, IL-33 induced senescence by regulating cell cycle factors in HK-2 cells, and accordingly senescence led to renal cell damage through the secretion of senescence-related secretory phenotype (SASP) including IL-33 and prostaglandins. Together, elevated IL-33 accelerates cellular senescence to drive DN possibly by SASP production, while a partial blockage improves renal injury and senescence. Our findings pinpoint a possible and new avenue for DN interventions.

4.
Food Funct ; 15(18): 9524-9540, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39223970

RESUMEN

Flaxseed lignan macromolecules (FLMs) are important polyphenols present in flaxseeds with interfacial adsorption behavior. However, FLMs are easily degraded during thermal treatment in emulsions, which further influences their interfacial properties and application. In this work, the interfacial properties of FLMs between oil and water were evaluated using compression isotherms and interfacial tension to investigate the regulation mechanism of FLMs and their heat-treated products on the stability of O/W emulsions. Furthermore, the improvement mechanism of FLM heat-treated products on the physicochemical stability of flaxseed oil emulsions was clarified. Studies showed that thermal degradation occurred on terminal phenolic acids in FLMs when treated under 100 and 150 °C (FLM-100 and FLM-150) without any decrease in antioxidant activity. FLM-100 and FLM-150 improved the physicochemical stability of sunflower lecithin (S90)-stabilized flaxseed oil emulsions and reduced the concentration of hydroperoxides and TBARS by 26.7% and 80% (p < 0.05), respectively, during storage. This was due to the high interfacial anchoring of FLM-100 and FLM-150, which further strengthened the interface of oil droplets and improved the interfacial antioxidant effect of FLMs. This implies that FLM-100 and FLM-150 could act as new efficient antioxidants for application in food emulsions.


Asunto(s)
Emulsiones , Lino , Calor , Lignanos , Ácido alfa-Linolénico , Lignanos/química , Emulsiones/química , Lino/química , Ácido alfa-Linolénico/química , Antioxidantes/química , Aceite de Linaza/química
5.
Food Res Int ; 190: 114629, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945621

RESUMEN

This study aims to investigate the effects of ultrasound coupled with alkali cycling on the structural properties, digestion characteristics, biological activity, and peptide profiling of flaxseed protein isolates (FPI). The digestibility of FPI obtained by ultrasound coupled with pH 10/12 cycling (UFPI-10/12) (74.56 % and 79.12 %) was significantly higher than that of native FPI (64.40 %), and UFPI-10 showed higher hydrolysis degree (35.76 %) than FPI (30.65 %) after intestinal digestion. The combined treatment induced transition from α-helix to ß-sheet with an orderly structure. Large FPI aggregates broke down into small-sized FPI particles, which induced the increase of specific surface area of particles. This might expose more cutting sites and contact area with enzymes. Furthermore, UFPI-10 showed high antioxidant activity (29.18 %) and lipid-lowering activity (70.52 %). Peptide profiling revealed that UFPI-10 exhibited a higher proportion of 300-600 Da peptides and significantly higher abundance of antioxidant peptides than native FPI, which might promote its antioxidant activity. Those results suggest that the combined treatment is a promising modification method to improve the digestion characteristics and biological activity of FPI. This work provides new ideas for widespread use of FPI as an active stabilizer in food systems.


Asunto(s)
Álcalis , Antioxidantes , Digestión , Lino , Péptidos , Proteínas de Plantas , Lino/química , Péptidos/metabolismo , Péptidos/química , Antioxidantes/química , Antioxidantes/análisis , Proteínas de Plantas/metabolismo , Álcalis/química , Concentración de Iones de Hidrógeno , Hidrólisis , Semillas/química , Manipulación de Alimentos/métodos , Ondas Ultrasónicas
6.
Antioxidants (Basel) ; 13(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38790619

RESUMEN

Sesame seeds are important resources for relieving oxidation stress-related diseases. Although a significant variation in seeds' antioxidant capability is observed, the underlying biochemical and molecular basis remains elusive. Thus, this study aimed to reveal major seed components and key molecular mechanisms that drive the variability of seeds' antioxidant activity (AOA) using a panel of 400 sesame accessions. The seeds' AOA, total flavonoid, and phenolic contents varied from 2.03 to 78.5%, 0.072 to 3.104 mg CAE/g, and 2.717 to 21.98 mg GAE/g, respectively. Analyses revealed that flavonoids and phenolic acids are the main contributors to seeds' AOA variation, irrespective of seed coat color. LC-MS-based polyphenol profiling of high (HA) and low (LA) antioxidant seeds uncovered 320 differentially accumulated phenolic compounds (DAPs), including 311 up-regulated in HA seeds. Tricin, persicoside, 5,7,4',5'-tetrahydro-3',6-dimethoxyflavone, 8-methoxyapigenin, and 6,7,8-tetrahydroxy-5-methoxyflavone were the top five up-regulated in HA. Comparative transcriptome analysis at three seed developmental stages identified 627~2357 DEGs and unveiled that differential regulation of flavonoid biosynthesis, phenylpropanoid biosynthesis, and stilbene biosynthesis were the key underlying mechanisms of seed antioxidant capacity variation. Major differentially regulated phenylpropanoid structural genes and transcription factors were identified. SINPZ0000571 (MYB), SINPZ0401118 (NAC), and SINPZ0500871 (C3H) were the most highly induced TFs in HA. Our findings may enhance quality breeding.

7.
J Colloid Interface Sci ; 669: 236-247, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38718577

RESUMEN

HYPOTHESIS: Protein-based soft particles possess a unique interfacial deformation behavior, which is difficult to capture and characterize. This complicates the analysis of their interfacial properties. Here, we aim to establish how the particle deformation affects their interfacial structural and mechanical properties. EXPERIMENTS: Gliadin nanoparticles (GNPs) were selected as a model particle. We studied their adsorption behavior, the time-evolution of their morphology, and rheological behavior at the air/water interface by combining dilatational rheology and microstructure imaging. The rheology results were analyzed using Lissajous plots and quantified using the recently developed general stress decomposition (GSD) method. FINDING: Three distinct stages were revealed in the adsorption and rearrangement process. First, spherical GNPs (∼105 nm) adsorbed to the interface. Then, these gradually deformed along the interface direction to a flattened shape, and formed a firm viscoelastic 2D solid film. Finally, further stretching and merging of GNPs at the interface resulted in rearrangement of their internal structure to form a thick film with lower stiffness than the initial film. These results demonstrate that the structure of GNPs confined at the interface is controlled by their deformability, and the latter can be used to tune the properties of prolamin particle-based multiphase systems.

8.
Foods ; 13(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38472897

RESUMEN

Flaxseed has been recognized as a superfood worldwide due to its abundance of diverse functional phytochemicals and nutrients. Various studies have shown that flaxseed consumption is beneficial to human health, though methods of processing flaxseed may significantly affect the absorption and metabolism of its bioactive components. Hence, flaxseed was subjected to various processing methods including microwaving treatment, microwave-coupled dry milling, microwave-coupled wet milling, and high-pressure homogenization. In vitro digestion experiments were conducted to assess the impact of these processing techniques on the potential gastrointestinal fate of flaxseed oil. Even though more lipids were released by the flaxseed at the beginning of digestion after it was microwaved and dry-milled, the full digestion of flaxseed oil was still restricted in the intestine. In contrast, oil droplets were more evenly distributed in wet-milled flaxseed milk, and there was a greater release of fatty acids during simulated digestion (7.33 ± 0.21 µmol/mL). Interestingly, wet-milled flaxseed milk showed higher oxidative stability compared with flaxseed powder during digestion despite the larger specific surface area of its oil droplets. This study might provide insight into the choice of flaxseed processing technology for better nutrient delivery efficiency.

9.
Int J Biol Macromol ; 265(Pt 1): 130742, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492704

RESUMEN

In this work, soybean lecithin (LC) was used to modify ß-cyclodextrin (ß-CD) with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified ß-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of ß-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between ß-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.


Asunto(s)
Ciclodextrinas , Nanopartículas , beta-Ciclodextrinas , Vitamina E/química , Lecitinas , beta Caroteno/química , Glycine max , Emulsiones/química , beta-Ciclodextrinas/química , Excipientes , Digestión , Tamaño de la Partícula
10.
Adv Colloid Interface Sci ; 325: 103117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38394718

RESUMEN

The chemical stability of edible oils rich in polyunsaturated fatty acids (PUFAs) is a major challenge within the food and supplement industries, as lipid oxidation reduces oil quality and safety. Despite appearing homogeneous to the human eye, bulk oils are actually multiphase heterogeneous systems at the nanoscale level. Association colloids, such as reverse micelles, are spontaneously formed within bulk oils due to the self-assembly of amphiphilic molecules that are present, like phospholipids, free fatty acids, and/or surfactants. In bulk oil, lipid oxidation often occurs at the oil-water interface of these association colloids because this is where different reactants accumulate, such as PUFAs, hydroperoxides, transition metals, and antioxidants. Consequently, the efficiency of antioxidants in bulk oils is governed by their chemical reactivity, but also by their ability to be located close to the site of oxidation. This review describes the impact of minor constituents in bulk oils on the nature of the association colloids formed. And then the formation of mixed reverse micelles (LOOH, (co)surfactants, or antioxidations) during the peroxidation of bulk oils, as well as changes in their composition and structure over time are also discussed. The critical importance of selecting appropriate antioxidants and surfactants for the changes of interface and colloid, as well as the inhibition of lipid oxidation is emphasized. The knowledge presented in this review article may facilitate the design of bulk oil products with improved resistance to oxidation, thereby reducing food waste and improving food quality and safety.


Asunto(s)
Antioxidantes , Eliminación de Residuos , Humanos , Antioxidantes/farmacología , Micelas , Alimentos , Peroxidación de Lípido , Aceites/química , Coloides , Oxidación-Reducción , Tensoactivos , Emulsiones
11.
Food Chem ; 446: 138782, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38402765

RESUMEN

Flaxseed milk is a plant-based dairy alternative that is rich in nutrients. Due to the low concentration of odor compounds in flaxseed milk, it cannot be completely extracted. This poses significant challenges for analysis. Therefore, this study developed a method suitable for extracting volatile compounds from flaxseed milk and compared it with three other extraction methods. It was found that Stir Bar Sorptive Extraction had the best extraction performance, identifying 39 odorants. Flavor dilution factors ranged from 1 to 512, with higher values observed for esters. 13 key odor compounds were identified (odor activity value > 1) using the external standard method for quantification; these included four aldehydes, three pyrazines, two alcohols, two esters, and two other compounds. Pyrazine compounds exhibited the highest concentrations. Aroma recombination and omission experiments showed that nine key odorants contributed significantly to the flavor profile of flaxseed milk, imparting aroma of cucumber, green, mushroom, fruity, sweet, and coconut.


Asunto(s)
Lino , Compuestos Orgánicos Volátiles , Animales , Odorantes/análisis , Leche/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Aldehídos/análisis , Compuestos Orgánicos Volátiles/análisis , Olfatometría/métodos
12.
ACS Appl Mater Interfaces ; 16(7): 9466-9482, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38324654

RESUMEN

The creation of a new metal-organic framework (MOF) with a hollow hierarchical porous structure has gained significant attention in the realm of enzyme immobilization. The present work employed a novel, facile, and effective combinatorial technique to synthesize modified MOF (N-PVP/HZIF-8) with a hierarchically porous core-shell structure, allowing for the preservation of the structural integrity of the encapsulated enzyme molecules. Scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, confocal laser scanning microscopy, and other characterization tools were used to fully explore the changes of morphological structure and surface properties in different stages of the preparation of immobilization enzyme CRL-N-PVP/HZIF-8, thus showing the superiority of N-PVP/HZIF-8 as an enzyme immobilization platform and the logic of the immobilization process on the carrier. Additionally, the maximum enzyme loading was 216.3 mg mL-1, the relative activity of CRL-N-PVP/HZIF-8 increased by 15 times compared with the CRL@ZIF-8 immobilized in situ, and exhibited quite good thermal, chemical, and operational stability. With a maximal conversion of 88.8%, CRL-N-PVP/HZIF-8 demonstrated good catalytic performance in the biosynthesis of phytosterol esters as a proof of concept. It is anticipated that this work will offer fresh concepts from several perspectives for the creation of MOF-based immobilized enzymes for biotechnological uses.


Asunto(s)
Estructuras Metalorgánicas , Zeolitas , Biocatálisis , Zeolitas/química , Porosidad , Enzimas Inmovilizadas/química , Catálisis , Estructuras Metalorgánicas/química
13.
Food Res Int ; 175: 113673, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38129022

RESUMEN

Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.


Asunto(s)
Lino , Proteínas de Soja , Proteínas de Soja/química , Emulsiones/química , Diálisis Renal , Proteínas de Plantas/química
14.
Crit Rev Food Sci Nutr ; : 1-16, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063353

RESUMEN

The application of plant proteins in food systems is largely hindered by their poor foaming or emulsifying properties and low digestibility compared with animal proteins, especially due to the aggregate state with tightly folded structure, slowly adsorbing at the interfaces, generating films with lower mechanical properties, and exposing less cutting sites. Physical fields and pH shifting have certain synergistic effects to efficiently tune the structure and redesign the interfacial layer of plant proteins, further enhancing their foaming or emulsifying properties. The improvement mechanisms mainly include: i) Aggregated plant proteins are depolymerized to form small protein particles and flexible structure is more easily exposed by combination treatment; ii) Particles with appropriate surface properties are quickly adsorbed to the interfacial layer, and then unfolded and rearranged to generate a tightly packed stiff interfacial layer to enhance bubble and emulsion stability; and iii) The unfolding and rearrangement of protein structure at the interface may result in the exposure of more cutting sites of digestive enzymes. This review summarizes the latest research progress on the structural changes, interfacial behaviors, and digestion properties of plant proteins under combined treatment, and elucidates the future development of these modification technologies for plant proteins in the food industry.

15.
Foods ; 12(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37835223

RESUMEN

In this study, the physical and oxidative stability of flaxseed milk without food additives at different temperatures (25 °C and 37 °C) was assessed. Over in 206 days in storage, the particle size, Turbiscan stability index (TSI), centrifugal sedimentation rate, and primary and secondary oxidation products of flaxseed milk increased, viscosity decreased, and the absolute value of the potential first decreased and then increased. These phenomena indicated a gradual decrease in the physical stability of flaxseed milk, accompanied by drastic oxidative changes. The antioxidant capacity of flaxseed milk was related to the location of the physical distribution of flaxseed lignin, which was more effective in the aqueous phase compared to the non-aqueous phase. Interestingly, after 171 days in storage at 37 °C, the particle size of flaxseed milk was approximately doubled (6.98 µm → 15.27 µm) and the absolute value of the potential reached its lowest point (-13.49 mV), when the content of primary oxidation products reached its maximum (8.29 mmol/kg oil). The results showed that temperature had a significant effect on the stability of flaxseed milk and that stability decreased with increasing temperature and shortened shelf life. This work provides a theoretical basis for elucidating the stabilization-destabilization mechanism of flaxseed milk.

16.
Food Res Int ; 172: 113173, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37689925

RESUMEN

A ß-carotene rich emulsion with improved physical and chemical stability was obtained in this study, using different types of protein-polysaccharide-polyphenol ternary complexes as novel emulsifiers. The ternary complexes were prepared by covalent or non-covalent binding of soy protein isolate (SPI), ß-glucan (DG) and myricetin (MC), which were evidenced to be stable. It was indicated that the emulsion stabilized by covalent complex of SPI, DG and MC, exhibited higher zeta-potential and smaller particle size than those stabilized by non-covalent complex. Furthermore, the covalent complexes prepared from different addition sequences showed different efficiencies in stabilizing the emulsion, in which SPI-DG-MC and SPI-MC-DG-stabilized emulsions possess better stability, emulsifying activity and storage resistance under adverse environmental treatment, with CI values of 62.7% and 64.3% after 25 days, respectively. According to oxidative stability and rheology analysis of the emulsions, it was found that the SPI-MC-DG complex prepared at the ratio of 4:2:1 was more stable with relatively less lipid oxidation products and a tighter stacking structure, and the final LH value was 39.98 mmol/L and the MDA value was 6.34 mmol/L. These findings implied that the ternary complex has the potential to deliver fat-soluble active ingredient by means of emulsion, but which depends on the mode and sequence of the molecular interactions.


Asunto(s)
beta Caroteno , beta-Glucanos , Emulsiones , Proteínas de Soja , Cetonas
17.
Int J Biol Macromol ; 253(Pt 3): 126698, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37678690

RESUMEN

The food industry has paid lots of attentions to curcumin because of its potential bioactive qualities. However, its use is severely constrained by its low bioavailability, stability and water solubility. Herein, we created sodium caseinate and carboxymethylpachymaran (CMP) nanoparticles (SMCNPs) that were loaded with curcumin. The composite nanoparticles were spherical, as characterized by SEM and TEM, the fluorescence spectroscopy, FTIR and XRD research revealed that hydrogen bonding, hydrophobic interaction and electrostatic interaction were the main drivers behind the creation of the nanoparticles. The SMCNPs exhibited lower particle size, greater dispersion and higher encapsulation rate when the mass ratio of sodium caseinate to CMP was 3:5 (particle size of 166.8 nm, PDI of 0.15, and encapsulation efficiency of 88.07 %). The composite nanoparticles had good antioxidant activity, physical stability and sustained release effect on intestinal tract during the in vitro simulation experiments, successfully preventing the early release of curcumin into gastric fluid. Finally, cytotoxicity studies told that the prepared composite nanoparticles have good biocompatibility and can inhibit the growth of tumor cells (HT-29). In conclusion, using CMP and sodium caseinate as carriers in this study may open up a fresh, environmentally friendly, and long-lasting way to construct a bioactive material delivery system.


Asunto(s)
Curcumina , Nanopartículas , Curcumina/química , Caseínas/química , Nanopartículas/química , Solubilidad , Tamaño de la Partícula , Portadores de Fármacos/química
18.
Food Chem ; 424: 136362, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37207605

RESUMEN

The current study was to investigate how microwave on flaxseed affected the physicochemical stability and gastrointestinal digestion of oil bodies (OBs) in flaxseed milk. Flaxseed was subjected to moisture adjustment (30-35 wt%, 24 h), and microwave exposure (0-5 min, 700  W). Microwave treatment slightly weakened the physical stability of flaxseed milk indicated by Turbiscan Stability Index, but there were no visual phase separation during 21 days of storage at 4 °C. Upon microwave treatment, OBs experienced the layer-by-layer encapsulation into loose interface embedding by storage protein-gum polysaccharide complex from bulk phase, resulting in lower viscoelasticity of flaxseed milk. The OBs underwent earlier interface collapse and lipolysis during gastrointestinal digestion, followed by synergistic micellar absorption, faster chylomicrons transport within enterocytes of rats fed flaxseed milk. The accumulation of α-linolenic acid and synergistic conversion into docosapentaenoic and docosahexanoic acids in jejunum tissue were achieved accompanied by the interface remodeling of OBs in flaxseed milk.


Asunto(s)
Lino , Ratas , Animales , Leche , Microondas , Digestión , Aceite de Linaza , Ácidos Grasos
19.
Foods ; 12(6)2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36981182

RESUMEN

A new focus with respect to the extraction of plant protein is that ingredient enrichment should target functionality instead of pursuing purity. Herein, the sequence aqueous extraction method was used to co-enrich five protein-polysaccharide natural fractions from flaxseed meal, and their composition, structure, and functional properties were investigated. The total recovery rate of flaxseed protein obtained by the sequence extraction approach was more than 80%, which was far higher than the existing reports. The defatted flaxseed meal was soaked by deionized water to obtain fraction 1 (supernatant), and the residue was further treated to get fraction 2 (supernatant) and 3 (precipitate) through weak alkali solubilization. Part of the fraction 2 was taken out, followed by adjusting its pH to 4.2. After centrifuging, the albumin-rich supernatant and precipitate with protein content of 73.05% were gained and labeled as fraction 4 and fraction 5. The solubility of fraction 2 and 4 exceeded 90%, and the foaming ability and stability of fraction 5 were 12.76 times and 9.89 times higher than commercial flaxseed protein, respectively. The emulsifying properties of fractions 1, 2, and 5 were all greater than that of commercial sodium caseinate, implying that these fractions could be utilized as high-efficiency emulsifiers. Cryo-SEM results showed that polysaccharides in fractions were beneficial to the formation of network structure and induced the formation of tighter and smoother interfacial layers, which could prevent emulsion flocculation, disproportionation, and coalescence. This study provides a reference to promote the high-value utilization of flaxseed meals.

20.
Foods ; 12(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36981213

RESUMEN

The susceptibility of polyunsaturated fatty acids to oxidation severely limits their application in functional emulsified foods. In this study, the effect of sesamol concentration on the physicochemical properties of WPI-stabilized fish oil emulsions was investigated, focusing on the relationship between sesamol-WPI interactions and interfacial behavior. The results relating to particle size, zeta-potential, microstructure, and appearance showed that 0.09% (w/v) sesamol promoted the formation of small oil droplets and inhibited oil droplet aggregation. Furthermore, the addition of sesamol significantly reduced the formation of hydrogen peroxide, generation of secondary reaction products during storage, and degree of protein oxidation in the emulsions. Molecular docking and isothermal titration calorimetry showed that the interaction between sesamol and ß-LG was mainly mediated by hydrogen bonds and hydrophobic interactions. Our results show that sesamol binds to interfacial proteins mainly through hydrogen bonding, and increasing the interfacial sesamol content reduces the interfacial tension and improves the physical and oxidative stability of the emulsion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA