Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Front Mol Neurosci ; 16: 1266983, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808473

RESUMEN

Basal forebrain cholinergic neurons (BFCNs) modulate cognitive functions such as attention, learning and memory. The NGF/TrkA pathway plays an important role in the development and function of BFCNs, although two mouse models conditionally deleting TrkA expression in the central nervous system (CNS) have shown contradictory results. To shed light into this discrepancy, we used a mouse model with a gain-of-function in TrkA receptor signaling. Our results indicate that enhanced TrkA signaling did not alter hippocampal cholinergic innervation, general locomotion or anxiety-related behaviors, but it increases ChAT expression, the number of cholinergic neurons at early postnatal stages and, mutant mice showed impaired motor learning and memory functions. These data demonstrate that proper functioning of the cholinergic system in CNS requires a balanced NGF/TrkA signaling.

2.
Biomolecules ; 13(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37238659

RESUMEN

Brain-derived nerve factor (BDNF), through TrkB receptor activation, is an important modulator for many different physiological and pathological functions in the nervous system. Among them, BDNF plays a crucial role in the development and correct maintenance of brain circuits and synaptic plasticity as well as in neurodegenerative diseases. The proper functioning of the central nervous system depends on the available BDNF concentrations, which are tightly regulated at transcriptional and translational levels but also by its regulated secretion. In this review we summarize the new advances regarding the molecular players involved in BDNF release. In addition, we will address how changes of their levels or function in these proteins have a great impact in those functions modulated by BDNF under physiological and pathological conditions.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Encéfalo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Plasticidad Neuronal/fisiología , Sistema Nervioso Central/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo
3.
Front Neurosci ; 16: 929469, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833090

RESUMEN

The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.

4.
J Cell Sci ; 133(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33288548

RESUMEN

Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Receptor trkB , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Endopeptidasas , Complejos de Clasificación Endosomal Requeridos para el Transporte , Hipocampo/metabolismo , Humanos , Glicoproteínas de Membrana , Neuronas/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Transducción de Señal , Ubiquitina Tiolesterasa/genética
5.
Science ; 363(6425): 413-417, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30679375

RESUMEN

How neuronal connections are established and organized into functional networks determines brain function. In the mammalian cerebral cortex, different classes of GABAergic interneurons exhibit specific connectivity patterns that underlie their ability to shape temporal dynamics and information processing. Much progress has been made toward parsing interneuron diversity, yet the molecular mechanisms by which interneuron-specific connectivity motifs emerge remain unclear. In this study, we investigated transcriptional dynamics in different classes of interneurons during the formation of cortical inhibitory circuits in mouse. We found that whether interneurons form synapses on the dendrites, soma, or axon initial segment of pyramidal cells is determined by synaptic molecules that are expressed in a subtype-specific manner. Thus, cell-specific molecular programs that unfold during early postnatal development underlie the connectivity patterns of cortical interneurons.


Asunto(s)
Corteza Cerebral/fisiología , Interneuronas/fisiología , Sinapsis/genética , Sinapsis/fisiología , Animales , Dendritas/genética , Dendritas/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Células Piramidales/fisiología , Análisis de Secuencia de ARN , Transcripción Genética , Transcriptoma
6.
Cell Rep ; 24(5): 1231-1242, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30067978

RESUMEN

Functional networks in the mammalian cerebral cortex rely on the interaction between glutamatergic pyramidal cells and GABAergic interneurons. Both neuronal populations exhibit an extraordinary divergence in morphology and targeting areas, which ultimately dictate their precise function in cortical circuits. How these prominent morphological differences arise during development is not well understood. Here, we conducted a high-throughput screen for genes differentially expressed by pyramidal cells and interneurons during cortical wiring. We found that NEK7, a kinase involved in microtubule polymerization, is mostly expressed in parvalbumin (PV+) interneurons at the time when they establish their connectivity. Functional experiments revealed that NEK7-deficient PV+ interneurons show altered microtubule dynamics, axon growth cone steering and reduced axon length, arbor complexity, and total number of synaptic contacts formed with pyramidal cells. Altogether, our results reveal a molecular mechanism by which the microtubule-associated kinase NEK7 regulates the wiring of PV+ interneurons.


Asunto(s)
Interneuronas/metabolismo , Quinasas Relacionadas con NIMA/metabolismo , Proyección Neuronal , Células Piramidales/metabolismo , Animales , Células Cultivadas , Interneuronas/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Quinasas Relacionadas con NIMA/genética , Células Piramidales/citología
7.
Neuron ; 95(3): 639-655.e10, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28712654

RESUMEN

Activity-dependent neuronal plasticity is a fundamental mechanism through which the nervous system adapts to sensory experience. Several lines of evidence suggest that parvalbumin (PV+) interneurons are essential in this process, but the molecular mechanisms underlying the influence of experience on interneuron plasticity remain poorly understood. Perineuronal nets (PNNs) enwrapping PV+ cells are long-standing candidates for playing such a role, yet their precise contribution has remained elusive. We show that the PNN protein Brevican is a critical regulator of interneuron plasticity. We find that Brevican simultaneously controls cellular and synaptic forms of plasticity in PV+ cells by regulating the localization of potassium channels and AMPA receptors, respectively. By modulating Brevican levels, experience introduces precise molecular and cellular modifications in PV+ cells that are required for learning and memory. These findings uncover a molecular program through which a PNN protein facilitates appropriate behavioral responses to experience by dynamically gating PV+ interneuron function.


Asunto(s)
Brevicano/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Memoria/fisiología , Parvalbúminas/metabolismo , Animales , Matriz Extracelular/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Corteza Visual/metabolismo
8.
J Neurosci ; 32(44): 15590-600, 2012 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-23115194

RESUMEN

Pilocarpine injection induces epileptic seizures in rodents, an experimental paradigm extensively used to model temporal lobe epilepsy in humans. It includes conspicuous neuronal death in the forebrain and previous work has demonstrated an involvement of the neurotrophin receptor p75(NTR) in this process. Following the identification of Galectin-1 (Gal-1) as a downstream effector of p75(NTR), we examine here the role of this endogenous lectin in pilocarpine-induced cell death in adult mice. We found that most somatostatin-positive neurons also express Gal-1 and that in mice lacking the corresponding gene Lgals1, pilocarpine-induced neuronal death was essentially abolished in the forebrain. We also found that the related lectin Galectin-3 (Gal-3) was strongly upregulated by pilocarpine in microglial cells. This upregulation was absent in Lgals1 mutants and our results with Lgals3-null animals show that Gal-3 is not required for neuronal death in the hippocampus. These findings provide new insights into the roles and regulation of endogenous lectins in the adult CNS and a surprisingly selective proapoptotic role of Gal-1 for a subpopulation of GABAergic interneurons.


Asunto(s)
Galectina 1/genética , Galectina 1/fisiología , Neuronas/patología , Convulsiones/fisiopatología , Animales , Axones/efectos de los fármacos , Muerte Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Interpretación Estadística de Datos , Femenino , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/fisiología , Agonistas Muscarínicos , Neurogénesis/efectos de los fármacos , Pilocarpina , Convulsiones/inducido químicamente , Convulsiones/patología , Somatostatina/fisiología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Estado Epiléptico/fisiopatología
9.
Stem Cells ; 30(10): 2128-39, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22865604

RESUMEN

Mutations in the gene encoding the methyl-CpG-binding protein MECP2 are the major cause of Rett syndrome, an autism spectrum disorder mainly affecting young females. MeCP2 is an abundant chromatin-associated protein, but how and when its absence begins to alter brain function is still far from clear. Using a stem cell-based system allowing the synchronous differentiation of neuronal progenitors, we found that in the absence of MeCP2, the size of neuronal nuclei fails to increase at normal rates during differentiation. This is accompanied by a marked decrease in the rate of ribonucleotide incorporation, indicating an early role of MeCP2 in regulating total gene transcription, not restricted to selected mRNAs. We also found that the levels of brain-derived neurotrophic factor (BDNF) were decreased in mutant neurons, while those of the presynaptic protein synaptophysin increased at similar rates in wild-type and mutant neurons. By contrast, nuclear size, transcription rates, and BDNF levels remained unchanged in astrocytes lacking MeCP2. Re-expressing MeCP2 in mutant neurons rescued the nuclear size phenotype as well as BDNF levels. These results reveal a new role of MeCP2 in regulating overall RNA synthesis in neurons during the course of their maturation, in line with recent findings indicating a reduced nucleolar size in neurons of the developing brain of mice lacking Mecp2.


Asunto(s)
Encéfalo/metabolismo , Tamaño del Núcleo Celular/genética , Células Madre Embrionarias/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/metabolismo , ARN Mensajero/biosíntesis , Síndrome de Rett/metabolismo , Animales , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Células Madre Embrionarias/patología , Femenino , Regulación del Desarrollo de la Expresión Génica , Vectores Genéticos , Humanos , Lentivirus , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Noqueados , Neuronas/patología , Síndrome de Rett/genética , Síndrome de Rett/patología , Transcripción Genética , Transfección
10.
Proc Natl Acad Sci U S A ; 109(35): 14230-5, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891354

RESUMEN

The functional relevance of brain-derived neurotrophic factor (BDNF) is beginning to be well appreciated not only in mice, but also in humans. Because reduced levels typically correlate with impaired neuronal function, increasing BDNF levels with well-tolerated drugs diffusing into the central nervous system may help in ameliorating functional deficits. With this objective in mind, we used the sphingosine-1 phosphate receptor agonist fingolimod, a drug that crosses the blood-brain barrier. In addition, fingolimod has recently been introduced as the first oral treatment for multiple sclerosis. In cultured neurons, fingolimod increases BDNF levels and counteracts NMDA-induced neuronal death in a BDNF-dependent manner. Ongoing synaptic activity and MAPK signaling is required for fingolimod-induced BDNF increase, a pathway that can also be activated in vivo by systemic fingolimod administration. Mice lacking Mecp2, a gene frequently mutated in Rett syndrome, show decreased levels of BDNF, and fingolimod administration was found to partially rescue these levels as well as the size of the striatum, a volumetric sensor of BDNF signaling in rodents. These changes correlate with increased locomotor activity of the Mecp2-deficient animals, suggesting that fingolimod may improve the functional output of the nervous system, in addition to its well-documented effects on lymphocyte egress from lymph nodes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Glicoles de Propileno/farmacología , Receptores de Lisoesfingolípidos/agonistas , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/metabolismo , Esfingosina/análogos & derivados , Animales , Astrocitos/citología , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/deficiencia , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Femenino , Clorhidrato de Fingolimod , Inmunosupresores/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , N-Metilaspartato/toxicidad , Neuronas/citología , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Embarazo , Síndrome de Rett/genética , Esfingosina/farmacología
11.
Proc Natl Acad Sci U S A ; 109(16): E934-43, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474351

RESUMEN

Topoisomerases are essential for DNA replication in dividing cells, but their genomic targets and function in postmitotic cells remain poorly understood. Here we show that a switch in the expression from Topoisomerases IIα (Top2α) to IIß (Top2ß) occurs during neuronal differentiation in vitro and in vivo. Genome-scale location analysis in stem cell-derived postmitotic neurons reveals Top2ß binding to chromosomal sites that are methylated at lysine 4 of histone H3, a feature of regulatory regions. Indeed Top2ß-bound sites are preferentially promoters and become targets during the transition from neuronal progenitors to neurons, at a time when cells exit the cell cycle. Absence of Top2ß protein or its activity leads to changes in transcription and chromatin accessibility at many target genes. Top2ß deficiency does not impair stem cell properties and early steps of neuronal differentiation but causes premature death of postmitotic neurons. This neuronal degeneration is caused by up-regulation of Ngfr p75, a gene bound and repressed by Top2ß. These findings suggest a chromatin-based targeting of Top2ß to regulatory regions in the genome to govern the transcriptional program associated with neuronal differentiation and longevity.


Asunto(s)
Cromatina/genética , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Neuronas/metabolismo , Animales , Western Blotting , Diferenciación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Dicetopiperazinas , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Inmunoprecipitación , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados , Neuronas/citología , Neuronas/efectos de los fármacos , Análisis de Secuencia por Matrices de Oligonucleótidos , Piperazinas/farmacología , Unión Proteica , Interferencia de ARN , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Inhibidores de Topoisomerasa II/farmacología
12.
J Cell Biol ; 196(6): 775-88, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22412021

RESUMEN

Although brain-derived neurotrophic factor (BDNF) regulates numerous and complex biological processes including memory retention, its extremely low levels in the mature central nervous system have greatly complicated attempts to reliably localize it. Using rigorous specificity controls, we found that antibodies reacting either with BDNF or its pro-peptide both stained large dense core vesicles in excitatory presynaptic terminals of the adult mouse hippocampus. Both moieties were ~10-fold more abundant than pro-BDNF. The lack of postsynaptic localization was confirmed in Bassoon mutants, a seizure-prone mouse line exhibiting markedly elevated levels of BDNF. These findings challenge previous conclusions based on work with cultured neurons, which suggested activity-dependent dendritic synthesis and release of BDNF. They instead provide an ultrastructural basis for an anterograde mode of action of BDNF, contrasting with the long-established retrograde model derived from experiments with nerve growth factor in the peripheral nervous system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Terminales Presinápticos/fisiología , Vesículas Secretoras/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Mutación , Precursores de Proteínas/metabolismo , Vesículas Secretoras/química
13.
J Neurosci ; 30(5): 1739-49, 2010 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-20130183

RESUMEN

Although brain-derived neurotrophic factor (BDNF) is linked with an increasing number of conditions causing brain dysfunction, its role in the postnatal CNS has remained difficult to assess. This is because the bdnf-null mutation causes the death of the animals before BDNF levels have reached adult levels. In addition, the anterograde axonal transport of BDNF complicates the interpretation of area-specific gene deletion. The present study describes the generation of a new conditional mouse mutant essentially lacking BDNF throughout the CNS. It shows that BDNF is not essential for prolonged postnatal survival, but that the behavior of such mutant animals is markedly altered. It also reveals that BDNF is not a major survival factor for most CNS neurons and for myelination of their axons. However, it is required for the postnatal growth of the striatum, and single-cell analyses revealed a marked decreased in dendritic complexity and spine density. In contrast, BDNF is dispensable for the growth of the hippocampus and only minimal changes were observed in the dendrites of CA1 pyramidal neurons in mutant animals. Spine density remained unchanged, whereas the proportion of the mushroom-type spine was moderately decreased. In line with these in vivo observations, we found that BDNF markedly promotes the growth of cultured striatal neurons and of their dendrites, but not of those of hippocampal neurons, suggesting that the differential responsiveness to BDNF is part of a neuron-intrinsic program.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/crecimiento & desarrollo , Neostriado/crecimiento & desarrollo , Animales , Recuento de Células , Células Cultivadas , Dendritas/metabolismo , Dendritas/ultraestructura , Femenino , Hipocampo/citología , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Neostriado/ultraestructura , Neuronas/citología , Neuronas/ultraestructura , Oligodendroglía/citología , Oligodendroglía/ultraestructura , Nervio Óptico/crecimiento & desarrollo , Nervio Óptico/ultraestructura , Proteínas tau/metabolismo
14.
J Biol Chem ; 280(41): 35018-27, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16049015

RESUMEN

The N-methyl-D-aspartate (NMDA) type of glutamate receptor (NMDAR) plays central roles in normal and pathological neuronal functioning. We have examined the regulation of the NR1 subunit of the NMDAR in response to excessive activation of this receptor in in vitro and in vivo models of excitotoxicity. NR1 protein expression in cultured cortical neurons was specifically reduced by stimulation with 100 microM NMDA or glutamate. NMDA decreased NR1 protein amounts by 71% after 8 h. Low NMDA concentrations (< or = 10 microM) had no effect. NR1 down-regulation was inhibited by the general NMDAR antagonist DL-AP5 and also by ifenprodil, which specifically antagonizes NMDARs containing NR2B subunits. Arrest of NMDAR signaling with DL-AP5 after brief exposure to NMDA did not prevent subsequent NR1 decrease. Down-regulation of NR1 did not involve calpain cleavage but resulted from a decrease in de novo synthesis consequence of reduced mRNA amounts. In contrast, NMDA did not alter the expression of NR2A mRNA or newly synthesized protein. In neurons transiently transfected with an NR1 promoter/luciferase reporter construct, promoter activity was reduced by 68% after 2 h of stimulation with NMDA, and its inhibition required extracellular calcium. A similar mechanism of autoregulation of the receptor probably operates during cerebral ischemia, because NR1 mRNA and protein were strongly decreased at early stages of blood reperfusion in the infarcted brains of rats subjected to occlusion of the middle cerebral artery. Because NR1 is the obligatory subunit of NMDARs, this regulatory mechanism will be fundamental to NMDAR functioning.


Asunto(s)
Isquemia Encefálica/patología , Regulación hacia Abajo , Receptores de N-Metil-D-Aspartato/química , Animales , Northern Blotting , Encéfalo/patología , Calcio/metabolismo , Colorantes/farmacología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Genes Reporteros , Immunoblotting , Inmunohistoquímica , Inmunoprecipitación , Luciferasas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Neuronas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/química , Receptores de N-Metil-D-Aspartato/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ribonucleasas/química , Transducción de Señal , Sales de Tetrazolio/farmacología , Tiazoles/farmacología , Factores de Tiempo , Transfección
15.
Mol Cell Neurosci ; 26(3): 470-80, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15234351

RESUMEN

trkB as receptor for neurotrophins brain-derived neurotrophic factor (BDNF)/neurotrophin (NT)-4/5 plays a crucial role during development, maintenance of the adult brain, and its adaptation to injury or pathological conditions. In spite of this, very little is known about the mechanisms that regulate its expression. Here, we show that forskolin (Fk) rapidly stimulates the expression of both the full-length and truncated trkB isoforms in primary cultures of cortical neurons. Gel shift assays and transient transfection experiments demonstrate that this activation occurs via a protein kinase A (PKA)/cyclic AMP-responsive element-binding protein (CREB)-dependent mechanism. Activated CREB binds to the second cyclic AMP (cAMP)-responsive element (CRE) of the two CRE sites located within the P2 promoter of the trkB gene, which is able to confer cAMP responsiveness to a heterologous promoter. Our results illustrate that the trkB gene is a target for CREB regulation and explain the increase of trkB expression produced in different adaptative responses of the nervous system where CREB is participating.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Receptor trkB/biosíntesis , Transducción de Señal/fisiología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Colforsina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/biosíntesis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Receptor trkB/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA