Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Chem Sci ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39220161

RESUMEN

Microscopic electric fields are increasingly found to play a pivotal role in catalysis of enzymatic and chemical reactions. Currently, the vibrational Stark effect is the main experimental method used to measure them. Here, we demonstrate how excited-state symmetry breaking can serve as a much more sensitive tool to assess these fields. Using transient infrared spectroscopy on a quadrupolar probe equipped with nitrile groups we demonstrate both its superior sensitivity and that it does not suffer from the notorious hydrogen-bond induced upshift of the C[triple bond, length as m-dash]N stretch frequency. In combination with conventional ground-state infrared absorption, excited-state symmetry breaking can be used to disentangle even weak specific hydrogen bond interactions from general field effects. We showcase this capability with the example of weak C-H hydrogen bonds in polar aprotic solvents. Additionally, we reveal for the first time symmetry breaking driven not by solvent but by the entropy of the pendant side chains of the chromophore. Our findings not only enhance our understanding of symmetry-breaking charge-transfer phenomena but pave the way toward using them in electric field sensing modality.

2.
J Phys Chem Lett ; 15(32): 8280-8286, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143858

RESUMEN

Electronic excitation in quadrupolar conjugated molecules rapidly localizes on a single electron donor-acceptor (DA) branch when in polar environments. The loss of center of inversion upon this excited-state symmetry breaking (ES-SB) can be monitored by exploiting the relaxation of the exclusion rules for IR and Raman vibrational transitions. Here, we compare ES-SB in a right-angled (1) and a centrosymmetric (2) DAD dyes using time-resolved IR spectroscopy. We show that the localization of the excitation can also be identified with the bent molecule 1. We find that contrary to dye 2, subpopulations with localized and delocalized excitation coexist for 1 in weak to medium polar solvents. This difference originates from the torsional disorder present in the excited state of 1 but not of 2. Additionally, irreversible localization in a bent molecule is shown to require higher solvent polarity than in a centrosymmetric one.

3.
J Phys Chem B ; 126(28): 5305-5319, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35829623

RESUMEN

Superconcentrated electrolytes have emerged as a promising class of materials for energy storage devices, with evidence that high voltage performance is possible even with water as the solvent. Here, we study the changes in the water hydrogen bonding network induced by the dissolution of lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) in concentrations ranging from the dilute to the superconcentrated regimes. Using time-resolved two-dimensional infrared spectroscopy, we observe the progressive disruption of the water-water hydrogen bond network and the appearance of isolated water molecules interacting only with ions, which can be identified and spectroscopically isolated through the intermolecular cross-peaks between the water and the TFSI- ions. Analyzing the vibrational relaxation of excitations of the H2O stretching mode, we observe a transition in the dominant relaxation path as the bulk-like water vanishes and is replaced by ion-solvation water with the rapid single-step relaxation of delocalized stretching vibrations into the low frequency modes being replaced by multistep relaxation through the intramolecular H2O bend and into the TFSI- high frequency modes prior to relaxing to the low frequency structural degrees of freedom. These results definitively demonstrate the absence of vibrationally bulk-like water in the presence of high concentrations of LiTFSI and especially in the superconcentrated regime, while additionally revealing aspects of the water hydrogen bond network that have been difficult to discern from the vibrational spectroscopy of the neat liquid.

4.
J Am Chem Soc ; 144(19): 8591-8604, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35470669

RESUMEN

Understanding the mechanisms of charge transport in batteries is important for the rational design of new electrolyte formulations. Persistent questions about ion transport mechanisms in battery electrolytes are often framed in terms of vehicular diffusion by persistent ion-solvent complexes versus structural diffusion through the breaking and reformation of ion-solvent contacts, i.e., solvent exchange events. Ultrafast two-dimensional (2D) IR spectroscopy can probe exchange processes directly via the evolution of the cross-peaks on picosecond time scales. However, vibrational energy transfer in the absence of solvent exchange gives rise to the same spectral signatures, hiding the desired processes. We employ 2D IR on solvent resonances of a mixture of acetonitrile isotopologues to differentiate chemical exchange and energy-transfer dynamics in a comprehensive series of Li+, Mg2+, Zn2+, Ca2+, and Ba2+ bis(trifluoromethylsulfonyl)imide electrolytes from the dilute to the superconcentrated regime. No exchange phenomena occur within at least 100 ps, regardless of the ion identity, salt concentration, and presence of water. All of the observed spectral dynamics originate from the intermolecular energy transfer. These results place the lower experimental boundary on the ion-solvent residence times to several hundred picoseconds, much slower than previously suggested. With the help of MD simulations and conductivity measurements on the Li+ and Zn2+ systems, we discuss these results as a continuum of vehicular and structural modalities that vary with concentration and emphasize the importance of collective electrolyte motions to ion transport. These results hold broadly applicable to many battery-relevant ions and solvents.

5.
J Phys Chem B ; 126(1): 278-291, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34962409

RESUMEN

Acetonitrile has emerged as a solvent candidate for novel electrolyte formulations in metal-ion batteries and supercapacitors. It features a bright local C≡N stretch vibrational mode whose infrared (IR) signature is sensitive to battery-relevant cations (Li+, Mg2+, Zn2+, Ca2+) both in pure form and in the presence of water admixture across a full possible range of concentrations from the dilute to the superconcentrated regime. Stationary and time-resolved IR spectroscopy thus emerges as a natural tool to study site-specific intermolecular interactions from the solvent perspective without introducing an extrinsic probe that perturbs solution morphology and may not represent the intrinsic dynamics in these electrolytes. The metal-coordinated acetonitrile, water-separated metal-acetonitrile pair, and free solvent each have a distinct vibrational signature that allows their unambiguous differentiation. The IR band frequency of the metal-coordinated acetonitrile depends on the ion charge density. To study the ion transport dynamics, it is necessary to differentiate energy-transfer processes from structural interconversions in these electrolytes. Isotope labeling the solvent is a necessary prerequisite to separate these processes. We discuss the design principles and choice of the CD313CN label and characterize its vibrational spectroscopy in these electrolytes. The Fermi resonance between 13C≡N and C-D stretches complicates the spectral response but does not prevent its effective utilization. Time-resolved two-dimensional (2D) IR spectroscopy can be performed on a mixture of acetonitrile isotopologues and much can be learned about the structural dynamics of various species in these formulations.


Asunto(s)
Electrólitos , Vibración , Acetonitrilos , Iones , Espectrofotometría Infrarroja
6.
Science ; 371(6525): 160-164, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33414217

RESUMEN

Hydrogen bonds (H-bonds) can be interpreted as a classical electrostatic interaction or as a covalent chemical bond if the interaction is strong enough. As a result, short strong H-bonds exist at an intersection between qualitatively different bonding descriptions, with few experimental methods to understand this dichotomy. The [F-H-F]- ion represents a bare short H-bond, whose distinctive vibrational potential in water is revealed with femtosecond two-dimensional infrared spectroscopy. It shows the superharmonic behavior of the proton motion, which is strongly coupled to the donor-acceptor stretching and disappears on H-bond bending. In combination with high-level quantum-chemical calculations, we demonstrate a distinct crossover in spectroscopic properties from conventional to short strong H-bonds, which identify where hydrogen bonding ends and chemical bonding begins.

8.
J Chem Phys ; 153(12): 124506, 2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-33003749

RESUMEN

The aqueous proton is a common and long-studied species in chemistry, yet there is currently intense interest devoted to understanding its hydration structure and transport dynamics. Typically described in terms of two limiting structures observed in gas-phase clusters, the Zundel H5O2 + and Eigen H9O4 + ions, the aqueous structure is less clear due to the heterogeneity of hydrogen bonding environments and room-temperature structural fluctuations in water. The linear infrared (IR) spectrum, which reports on structural configurations, is challenging to interpret because it appears as a continuum of absorption, and the underlying vibrational modes are strongly anharmonically coupled to each other. Recent two-dimensional IR (2D IR) experiments presented strong evidence for asymmetric Zundel-like motifs in solution, but true structure-spectrum correlations are missing and complicated by the anharmonicity of the system. In this study, we employ high-level vibrational self-consistent field/virtual state configuration interaction calculations to demonstrate that the 2D IR spectrum reports on a broad distribution of geometric configurations of the aqueous proton. We find that the diagonal 2D IR spectrum around 1200 cm-1 is dominated by the proton stretch vibrations of Zundel-like and intermediate geometries, broadened by the heterogeneity of aqueous configurations. There is a wide distribution of multidimensional potential shapes for the proton stretching vibration with varying degrees of potential asymmetry and confinement. Finally, we find specific cross peak patterns due to aqueous Zundel-like species. These studies provide clarity on highly debated spectral assignments and stringent spectroscopic benchmarks for future simulations.

9.
J Phys Chem B ; 124(32): 7013-7026, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32687351

RESUMEN

In this work, we study the vibrational solvatochromism and dynamics of dilute acetone as a carbonyl probe in simple aqueous electrolytes as a function of salt composition and concentration. We observe a linear dependence of the redshift of the CO stretch mode as a function of concentration for each salt, with the magnitude of the effect scaling with the charge densities of the cations. Using molecular dynamics (MD) simulations, we compare the observed spectral shifts with the electrostatic field distributions imparted on the acetone O, comparing a fixed-charge model and a polarizable model, and find that the experimentally observed frequencies scale linearly with the electric field for a given salt, but there remains a substantial component of the solvatochromism that depends on the identity of the cation and apparently cannot be explained by the electrostatic fields alone. Finally, we use ultrafast 2D IR spectroscopy to study the salt dependence of the solvation dynamics. We observe an anomalous nonmonotonic dependence of the time scale of the dynamics on the salt concentration, which cannot be reproduced by the fluctuations in the electrostatic field determined from MD simulations. These results point to the importance of both electrostatic and nonelectrostatic effects in the vibrational solvatochromism and dynamics in this apparently simple model system.


Asunto(s)
Electrólitos , Vibración , Simulación de Dinámica Molecular , Electricidad Estática , Agua
10.
Nat Commun ; 11(1): 1925, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317631

RESUMEN

The nature of the electronic excited state of many symmetric multibranched donor-acceptor molecules varies from delocalized/multipolar to localized/dipolar depending on the environment. Solvent-driven localization breaks the symmetry and traps the exciton in one branch. Using a combination of ultrafast spectroscopies, we investigate how such excited-state symmetry breaking affects the photochemical reactivity of quadrupolar and octupolar A-(π-D)2,3 molecules with photoisomerizable A-π-D branches. Excited-state symmetry breaking is identified by monitoring several spectroscopic signatures of the multipolar delocalized exciton, including the S2 ← S1 electronic transition, whose energy reflects interbranch coupling. It occurs in all but nonpolar solvents. In polar media, it is rapidly followed by an alkyne-allene isomerization of the excited branch. In nonpolar solvents, slow and reversible isomerization corresponding to chemically-driven symmetry breaking, is observed. These findings reveal that the photoreactivity of large conjugated molecules can be tuned by controlling the localization of the excitation.

11.
Chem Sci ; 11(30): 7963-7971, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34094165

RESUMEN

Excited-state proton transfer (ESPT) to solvent is often explained according to the two-step Eigen-Weller model including a contact ion pair (CIP*) as an intermediate, but general applicability of the model has not been thoroughly examined. Furthermore, examples of the spectral identification of CIP* are scarce. Here, we report on a detailed investigation of ESPT to protic (H2O, D2O, MeOH and EtOH) and aprotic (DMSO) solvents utilizing a broadband fluorescence technique with sub-200 fs time resolution. The time-resolved spectra are decomposed into contributions from the protonated and deprotonated species and a clear signature of CIP* is identified in DMSO and MeOH. Interestingly, the CIP* intermediate is not observable in aqueous environment although the dynamics in all solvents are multi-exponential. Global analysis based on the Eigen-Weller model is satisfactory in all solvents, but the marked mechanistic differences between aqueous and organic solvents cast doubt on the physical validity of the rate constants obtained.

12.
Molecules ; 24(23)2019 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795316

RESUMEN

The formation of a halogen-bond (XB) complex in the excited state was recently reported with a quadrupolar acceptor-donor-acceptor dye in two iodine-based liquids (J. Phys. Chem. Lett. 2017, 8, 3927-3932). The ultrafast decay of this excited complex to the ground state was ascribed to an electron transfer quenching by the XB donors. We examined the mechanism of this process by investigating the quenching dynamics of the dye in the S1 state using the same two iodo-compounds diluted in inert solvents. The results were compared with those obtained with a non-halogenated electron acceptor, fumaronitrile. Whereas quenching by fumaronitrile was found to be diffusion controlled, that by the two XB compounds is slower, despite a larger driving force for electron transfer. A Smoluchowski-Collins-Kimball analysis of the excited-state population decays reveals that both the intrinsic quenching rate constant and the quenching radius are significantly smaller with the XB compounds. These results point to much stronger orientational constraint for quenching with the XB compounds, indicating that electron transfer occurs upon formation of the halogen bond.


Asunto(s)
Fumaratos/química , Halógenos/química , Modelos Químicos , Transporte de Electrón
13.
Photochem Photobiol Sci ; 18(11): 2814, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642463

RESUMEN

Correction for 'Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part I - self-quenched prodrugs' by Jordan Bouilloux et al., Photochem. Photobiol. Sci., 2018, 17, 1728-1738.

14.
Photochem Photobiol Sci ; 18(11): 2815, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31642833

RESUMEN

Correction for 'Cyclopeptidic photosensitizer prodrugs as proteolytically triggered drug delivery systems of pheophorbide A: part II - co-loading of pheophorbide A and black hole quencher' by Jordan Bouilloux et al., Photochem. Photobiol. Sci., 2018, 17, 1739-1748.

15.
J Phys Chem Lett ; 10(11): 2944-2948, 2019 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-31081644

RESUMEN

The influence of torsional disorder around the ethynyl π-bridges of a linear D-π-A-π-D molecule on the nature of its S1 excited state was investigated using ultrafast time-resolved infrared spectroscopy. By tuning the pump wavelength throughout the S1 ← S0 absorption band, subpopulations with different extents of asymmetry could be excited. In nonpolar solvents, the equilibrated S1 state is symmetric and quadrupolar independently of the initial degree of distortion. Photoexcitation of distorted molecules is followed by planarization and symmetrization of the S1 state. Excited-state symmetry breaking is only observed in polar environments, where the equilibrated S1 state has a strong dipolar character. However, neither the extent nor the rate of symmetry breaking are enhanced in an initially distorted molecule. They are only determined by the polarity and the dynamic properties of the solvent.

16.
Angew Chem Int Ed Engl ; 57(52): 17014-17018, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30388305

RESUMEN

Intermolecular H-bonding dynamics around a photoexcited quadrupolar dye is directly observed using transient 2D-IR spectroscopy. Upon solvent-induced symmetry breaking, the H-bond accepting abilities of the two nitrile end-groups change drastically, and in extremely protic (superprotic) solvents, a tight H-bond complex forms at one end. The time evolution of the 2D C≡N lineshape in methanol points to rapid, 2-3 ps, spectral diffusion due to fluctuations of the H-bonding network. Similar behavior is observed in a superprotic solvent shortly after photoexcitation of the dye. However, at later times, the completely inhomogeneous band does not exhibit spectral diffusion for at least 5 ps, pointing to a glass-like environment around one side of the dye. About half of the excited dyes show this behavior attributed to the tight H-bond complex, whereas the others are loosely bound. A weak cross peak indicates partial exchange between these excited state subpopulations.

17.
Photochem Photobiol Sci ; 17(11): 1728-1738, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215073

RESUMEN

Herein, we report the synthesis of a new prodrug system consisting of regioselectively addressable functionalized templates bearing multiple pheophorbide A moieties for use in photodynamic therapy. These coupling reactions were achieved using copper-free "click" chemistry, namely a strain-promoted azide-alkyne cycloaddition. This new design was used to obtain well-defined quenched photosensitizer prodrugs with perfect knowledge of the number and position of loaded photosensitizers, providing structures bearing up to six photosentitizers and two PEG chains. These conjugates are ideally quenched in their native state regarding their fluorescence emission (up to 155 ± 28 times less fluorescent for an hexasubstituted conjugate than a monosubstituted non-quenched reference compound) or singlet oxygen production (decreased 8.7-fold in the best case) when excited. After 2 h of proteolytic activation, the fluorescence emission of a tetrasubstituted conjugate was increased 17-fold compared with the initial fluorescence emission.


Asunto(s)
Clorofila/análogos & derivados , Sistemas de Liberación de Medicamentos , Péptidos Cíclicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Profármacos/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Estructura Molecular , Péptidos Cíclicos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Profármacos/química , Proteolisis , Estereoisomerismo , Tripsina/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
18.
Photochem Photobiol Sci ; 17(11): 1739-1748, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215090

RESUMEN

Previously, we have shown that the use of a cyclopeptidic carrier could be of great interest for the design of fully characterized prodrugs for further use in photodynamic therapy. In order to further optimize the design, we decided to modify the highly quenched conjugate uPA-cPPP4/5 by co-loading a long-distance fluorescence quencher. For this purpose we tethered two black hole quenchers (BHQ3) together with two pheophorbide A moities onto the same PEGylated backbone and assessed the modified photophysical properties. In addition, to prove the reliability of our concept, we designed two analogues, uPA-cPPQ2+2/5 and CathB-cPPQ2+2/5, by using two different peptidic linkers as substrates for uPA and cathepsin B, respectively. These two conjugates proved to be much more water-soluble than their analogues bearing only Phas. These conjugates are not only highly quenched in their native state with regard to their fluorescence emission (up to 850 ± 287 times less fluorescent for CathB-cPPQ2+2/5 as compared to the unquenched monosubstituted reference uPA-cPPP1/5), but also prevent singlet oxygen production (with a total quenching of the emission when the quenchers are co-loaded with photosensitizers) when the photosentistizers are excited. After proteolytic activation, these conjugates recover their photophysical properties in the same way as occurred for uPA-cPPP4/5, with up to a 120-fold increase in fluorescence emission for uPA-cPPQ2+2/5 after two hours of incubation with uPA.


Asunto(s)
Clorofila/análogos & derivados , Sistemas de Liberación de Medicamentos , Péptidos Cíclicos/metabolismo , Fármacos Fotosensibilizantes/metabolismo , Profármacos/metabolismo , Clorofila/química , Clorofila/metabolismo , Fluorescencia , Humanos , Estructura Molecular , Péptidos Cíclicos/química , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Profármacos/química , Proteolisis
19.
Phys Chem Chem Phys ; 20(10): 7254-7264, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29484322

RESUMEN

The excited-state dynamics of the push-pull azobenzene Methyl Orange (MO) were investigated in several solvents and water/glycerol mixtures using a combination of ultrafast time-resolved fluorescence and transient absorption in both the UV-visible and the IR regions, as well as quantum chemical calculations. Optical excitation of MO in its trans form results in the population of the S2 ππ* state and is followed by internal conversion to the S1 nπ* state in ∼50 fs. The population of this state decays on the sub-picosecond timescale by both internal conversion to the trans ground state and isomerisation to the cis ground state. Finally, the cis form converts thermally to the trans form on a timescale ranging from less than 50 ms to several minutes. Significant differences depending on the hydrogen-bond donor strength of the solvents, quantified by the Kamlet Taft parameter α, were observed: compared to the other solvents, in highly protic solvents (α > 1), (i) the viscosity dependence of the S1 state lifetime is less pronounced, (ii) the S1 state lifetime is shorter by a factor of ≈1.5 for the same viscosity, (iii) the trans-to-cis photoisomerisation efficiency is smaller, and (iv) the thermal cis-to-trans isomerisation is faster by a factor of ≥103. These differences are explained in terms of hydrogen-bond interactions between the solvent and the azo nitrogen atoms of MO, which not only change the nature of the S1 state but also have an impact on the shape of ground- and excited-state potentials, and, thus, affect the deactivation pathways from the excited state.

20.
J Phys Chem Lett ; 8(24): 6029-6034, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29190104

RESUMEN

The influence of the length of the push-pull branches of quadrupolar molecules on their excited-state symmetry breaking was investigated using ultrafast time-resolved IR spectroscopy. For this, the excited-state dynamics of an A-π-D-π-A molecule was compared with those of an ADA analogue, where the same electron donor (D) and acceptor (A) subunits are directly linked without a phenylethynyl π-spacer. The spatial distribution of the excitation was visualized in real time by monitoring C≡C and C≡N vibrational modes localized in the spacer and acceptor units, respectively. In nonpolar solvents, the excited state is quadrupolar and the excitation is localized on the π-D-π center. In medium polarity solvents, the excitation spreads over the entire molecule but is no longer symmetric. Finally, in the most polar solvents, the excitation localizes on a single D-π-A branch, contrary to the ADA analogue where symmetry breaking is only partial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA