Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cells ; 13(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38920635

RESUMEN

Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).


Asunto(s)
Reprogramación Celular , Neoplasias de la Próstata , Humanos , Neoplasias de la Próstata/patología , Masculino , Reprogramación Celular/genética , Animales
2.
Rev Med Virol ; 34(3): e2541, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38743385

RESUMEN

As the mankind counters the ongoing COVID-19 pandemic by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), it simultaneously witnesses the emergence of mpox virus (MPXV) that signals at global spread and could potentially lead to another pandemic. Although MPXV has existed for more than 50 years now with most of the human cases being reported from the endemic West and Central African regions, the disease is recently being reported in non-endemic regions too that affect more than 50 countries. Controlling the spread of MPXV is important due to its potential danger of a global spread, causing severe morbidity and mortality. The article highlights the transmission dynamics, zoonosis potential, complication and mitigation strategies for MPXV infection, and concludes with suggested 'one health' approach for better management, control and prevention. Bibliometric analyses of the data extend the understanding and provide leads on the research trends, the global spread, and the need to revamp the critical research and healthcare interventions. Globally published mpox-related literature does not align well with endemic areas/regions of occurrence which should ideally have been the scenario. Such demographic and geographic gaps between the location of the research work and the endemic epicentres of the disease need to be bridged for greater and effective translation of the research outputs to pubic healthcare systems, it is suggested.


Asunto(s)
Bibliometría , Humanos , Brotes de Enfermedades/prevención & control , Animales , Mpox/epidemiología , Mpox/transmisión , Mpox/prevención & control , Mpox/virología , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/prevención & control , COVID-19/virología , SARS-CoV-2 , Zoonosis/epidemiología , Zoonosis/virología , Zoonosis/transmisión , Zoonosis/prevención & control , Pandemias/prevención & control
3.
Int J Biol Macromol ; 269(Pt 1): 131802, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670178

RESUMEN

Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Edición Génica/métodos , Humanos , Animales , Vacunas/inmunología , Vacunas/genética , Desarrollo de Vacunas
4.
Health Sci Rep ; 7(1): e1831, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38274135

RESUMEN

Background and Aim: Severe morbidity and mortality due to seasonal infectious diseases are common global public health issues. Vector-borne viral illnesses like dengue and chikungunya overload the healthcare systems leading to critical financial burden to manage them. There is no effective drug or vaccine currently available to control these two diseases. Methods: The review was formulated by incorporating relevant reports on chikungunya and dengue in the Americas regions through a comprehensive search of literature that were available on dedicated scientific publication portals such as PubMed, ScienceDirect, and Web of Science. Results: The strategies of public health administrations to control largely the mosquito vectors during tropical monsoon seem to be effective. Yet, it seems practically impossible to completely eliminate them. The mosquito vector disseminates the virus via transovarian route thereby internalising the virus through generations, a reason behind reappearing and recurring outbreaks. The numerous factors associated with industrialisation, urbanisation, population density, and easy transboundary movements appear to have contributed to the spread of vectors from an endemic region to elsewhere. Conclusion: The article made a state-of-affair comprehensive analysis of the rising dengue and chikungunya cases in the tropics, particularly the tropical Americas, as a human health concern, the countermeasures undertaken and the overall preparedness. The viral transmission is a hard situation to tackle as the vector survives in diverse temperature and ecology, is resistant to insecticides, and the unavailability of drugs. Better vector-control measures and improved understanding of the reemerging arboviral infections could offer an extended reaction time to counter outbreaks, and minimise associated morbidity/mortality.

5.
Health Sci Rep ; 6(11): e1661, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37908639

RESUMEN

Background and Aim: Severe viral hemorrhagic fever (VHF) is caused by Marburg virus which is a member of the Filoviridae (filovirus) family. Many Marburg virus disease (MVD) outbreaks are reported in five decades. A major notable outbreak with substantial reported cases of infections and deaths was in 2022 in Uganda. The World Health Organisation (WHO) reported MVD outbreak in Ghana in July 2022 following the detection of two probable VHF patients there. Further, the virus was reported from two other African countries, the Equatorial Guinea (February 2023) and Tanzania (March 2023). There have been 35 deaths out of 40 reported cases in Equatorial Guinea, and six of the nine confirmed cases in Tanzania so far. Methods: Data particularly on the several MVD outbreaks as reported from the African countries were searched on various databases including the Pubmed, Scopus, and Web-of-science. Also, the primary data and reports from health agencies like the WHO and the Centers for Disease Control and Prevention CDC) were evaluated and the efficacy reviewed. Results: Chiroptera in general and bat species like Rousettus aegyptiacus and Hipposideros caffer in particular are natural reservoirs of the Marburg virus. MVD-infected nonhuman primate African fruit-bat and the MVD-infected humans pose significant risk in human infections. Cross-border viral transmission and its potential further international ramification concerns raise the risk of its rapid spread and a potential outbreak. Occurrence of MVD is becoming more frequent in Africa with higher case fatality rates. Effective prophylactic and therapeutic interventions to counter this deadly virus are suggested. Conclusion: In the face of the lack of effective therapeutics and preventives against MVD, supportive care is the only available option which contributes to the growing concern and disease severity. In view of the preventive approaches involving effective surveillance and monitoring system following the "One Health" model is extremely beneficial to ensure a healthy world for all, this article aims at emphasizing several MVD outbreaks, epidemiology, zoonosis of the virus, current treatment strategies, risk assessments, and the mitigation strategies against MVD.

6.
ACS Omega ; 8(31): 27953-27968, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576639

RESUMEN

Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.

7.
Mol Immunol ; 161: 25-32, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481826

RESUMEN

Uncontrolled activation of the alternative pathway (AP) of complement, due to genetic and/or acquired defects, plays a primary pathogenetic role in C3 glomerulopathy (C3G), a rare and heterogeneous disease characterised by predominant C3 fragment deposition within the glomerulus, as well as glomerular damage. There are currently no approved disease-specific treatments for C3G, but new drugs that directly counteract AP dysregulation, targeting components of the pathway, have opened promising new perspectives for managing the disease. Complement factor B (FB), which is primarily synthesised by hepatocytes, is a key component of the AP, as it drives the central amplification loop of the complement system. In this study we used a GalNAc (N-Acetylgalactosamine)-conjugated siRNA to selectively target and suppress liver FB expression in two mouse models characterised by the complete (Cfh-/- mice) or partial (Cfh+/-) loss of function of complement factor H (FH). Homozygous deletion of FH induced a severe C3G phenotype, with strong dysregulation of the AP of complement, glomerular C3 deposition and almost complete C3 consumption. Mice with a heterozygous deletion of FH had intermediate C3 levels and exhibited slower disease progression, resembling human C3G more closely. Here we showed that FB siRNA treatment did not improve serum C3 levels, nor limit glomerular C3 deposition in Cfh-/- mice, while it did normalise circulating C3 levels, reduce glomerular C3 deposits, and limit mesangial electron-dense deposits in Cfh+/- mice. The present data provide important insights into the potential benefits and limitations of FB-targeted inhibition strategies and suggest RNA interference-mediated FB silencing in the liver as a possible therapeutic approach for treating C3G patients with FH haploinsufficiency.


Asunto(s)
Glomerulonefritis Membranoproliferativa , Enfermedades Renales , Humanos , Animales , Ratones , Factor B del Complemento/genética , Factor B del Complemento/metabolismo , Complemento C3 , Homocigoto , Eliminación de Secuencia , Factor H de Complemento/genética , Hígado/metabolismo , Vía Alternativa del Complemento/genética , Glomerulonefritis Membranoproliferativa/genética , Glomerulonefritis Membranoproliferativa/terapia , Glomerulonefritis Membranoproliferativa/metabolismo
8.
Vaccines (Basel) ; 11(7)2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37514970

RESUMEN

Epidemiological surveillance involves systematic gathering, analysis, interpretation, and sharing of health data, with the goal of preventing and controlling diseases [...].

9.
Nano Lett ; 23(9): 3947-3953, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37092857

RESUMEN

Bulk Dirac semimetals (DSMs) exhibit unconventional transport properties and phase transitions due to their peculiar low-energy band structure, yet the electronic interactions governing nonequilibrium phenomena in DSMs are not fully understood. Here we show that electron-phonon (e-ph) interactions in a prototypical bulk DSM, Na3Bi, are predominantly two-dimensional (2D). Our first-principles calculations reveal a 2D optical phonon with strong e-ph interactions associated with in-plane vibrations of Na atoms. We show that this 2D mode governs e-ph scattering and charge transport in Na3Bi and induces a dynamical phase transition to a Weyl semimetal. Our work advances the quantitative analysis of electron interactions in Na3Bi and reveals a dominant low-dimensional interaction in a bulk Dirac semimetal.

12.
Vaccines (Basel) ; 11(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36992244

RESUMEN

Lipid-based vaccine delivery systems such as the conventional liposomes, virosomes, bilosomes, vesosomes, pH-fusogenic liposomes, transferosomes, immuno-liposomes, ethosomes, and lipid nanoparticles have gained a remarkable interest in vaccine delivery due to their ability to render antigens in vesicular structures, that in turn prevents its enzymatic degradation in vivo. The particulate form of lipid-based nanocarriers confers immunostimulatory potential, making them ideal antigen carriers. Facilitation in the uptake of antigen-loaded nanocarriers, by the antigen-presenting cells and its subsequent presentation through the major histocompatibility complex molecules, leads to the activation of a cascade of immune responses. Further, such nanocarriers can be tailored to achieve the desired characteristics such as charge, size, size distribution, entrapment, and site-specificity through modifications in the composition of lipids and the selection of the appropriate method of preparation. This ultimately adds to its versatility as an effective vaccine delivery carrier. The current review focuses on the various lipid-based carriers that have been investigated to date as potential vaccine delivery systems, the factors that affect their efficacy, and their various methods of preparation. The emerging trends in lipid-based mRNA vaccines and lipid-based DNA vaccines have also been summarized.

14.
Biomedicines ; 11(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36830842

RESUMEN

Diabetic nephropathy is the primary cause of morbidity in type 2 diabetes mellitus (T2DM) patients. New data indicate that hypertension, a common comorbidity in T2DM, can worsen outcomes of diabetic nephropathy. While metformin is a commonly prescribed drug for treating type 2 diabetes, its blood pressure regulating ability is not well documented. The aim of this study was to investigate the effect of metformin on normalizing blood pressure in salt-loaded hypertensive diabetic db/db mice. Sixteen-week-old male and female diabetic db/db mice were individually placed in metabolic cages and then randomized to a control vehicle (saline) or metformin treatment group. We evaluated the blood pressure reducing ability of metformin in salt-induced hypertension and progression of nephropathy in db/db mice. We observed that metformin- normalized systolic blood pressure in hypertensive diabetic mice. Mechanistically, metformin treatment reduced renal cathepsin B expression. Low cathepsin B expression was associated with reduced expression and activity of the epithelial sodium channel (ENaC), sodium retention, and thus control of hypertension. In addition, we identified that urinary extracellular vesicles (EVs) from the diabetic mice are enriched in cathepsin B. Compared to treatment with urinary EVs of vehicle-treated hypertensive diabetic mice, the amiloride-sensitive transepithelial current was significantly attenuated upon exposure of renal collecting duct cells to urinary EVs isolated from metformin-treated db/db mice or cathepsin B knockout mice. Collectively, our study identifies a novel blood pressure reducing role of metformin in diabetic nephropathy by regulating the cathepsin B-ENaC axis.

15.
Clin Immunol ; 248: 109213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566913

RESUMEN

Ferroptosis is a druggable, iron-dependent form of cell death that is characterized by lipid peroxidation but has received little attention in lupus nephritis. Kidneys of lupus nephritis patients and mice showed increased lipid peroxidation mainly in the tubular segments and an increase in Acyl-CoA synthetase long-chain family member 4, a pro-ferroptosis enzyme. Nephritic mice had an attenuated expression of SLC7A11, a cystine importer, an impaired glutathione synthesis pathway, and low expression of glutathione peroxidase 4, a ferroptosis inhibitor. Lipidomics of nephritic kidneys confirmed ferroptosis. Using nephrotoxic serum, we induced immune complex glomerulonephritis in congenic mice and demonstrate that impaired iron sequestration within the proximal tubules exacerbates ferroptosis. Lupus nephritis patient serum rendered human proximal tubular cells susceptibility to ferroptosis which was inhibited by Liproxstatin-2, a novel ferroptosis inhibitor. Collectively, our findings identify intra-renal ferroptosis as a pathological feature and contributor to tubular injury in human and murine lupus nephritis.


Asunto(s)
Ferroptosis , Enfermedades Renales , Nefritis Lúpica , Humanos , Ratones , Animales , Hierro/metabolismo , Glomérulos Renales/metabolismo , Células Epiteliales/metabolismo
17.
Biology (Basel) ; 11(1)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053120

RESUMEN

Hypertension is associated with an increased renal expression and activity of the epithelial sodium channel (ENaC) and iron deficiency. Distal tubules absorb iron, causing perturbations that may influence local responses. In this observational study, we investigated the relationship between iron content and ENaC expression and activity using two cell lines and hepcidin knockout mice (a murine model of iron overload). We found that iron did not transcriptionally regulate ENaC in hepcidin knockout mice or in vitro in collecting duct cells. However, the renal tubules of hepcidin knockout mice have a lower expression of ENaC protein. ENaC activity in cultured Xenopus 2F3 cells and mpkCCD cells was inhibited by iron, which could be reversed by iron chelation. Thus, our novel findings implicate iron as a regulator of ENaC protein and its activity.

18.
Front Immunol ; 11: 201, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153567

RESUMEN

The complement system plays an important role in the pathogenesis of rheumatoid arthritis (RA). Besides driving lectin pathway (LP) activation, the mannan-binding lectin (MBL)-associated serine proteases (MASPs) also play a key role in regulating the alternative pathway (AP). We evaluated the effects of N-acetylgalactosamine (GalNAc)-conjugated MASP-1 and MASP-2 duplexes in vitro and in mice with and without arthritis to examine whether knockdown of MASP-1 and MASP-2 expression affects the development of arthritis. GalNAc-siRNAs for MASP-1 and MASP-2 demonstrated robust silencing of MASP-1 or MASP-2 at pM concentrations in vitro. To evaluate the impact of silencing in arthritic mice, we used the collagen antibody-induced arthritis (CAIA) mouse model of RA. Mice were injected a 10 mg/kg dose of GalNAc-siRNAs 3x s.q. prior to the induction of CAIA. Liver gene expression was examined using qRT-PCR, and protein levels were confirmed in the circulation by sandwich immunoassays and Western blot. At day 10, CAIA mice separately treated with MASP-1 and MASP-2 duplexes had a specific reduction in expression of liver MASP-1 (70-95%, p < 0.05) and MASP-2 (90%, p < 0.05) mRNA, respectively. MASP-1-siRNA treatment resulted in a 95% reduction in levels of MASP-1 protein in circulation with no effect on MASP-2 levels and clinical disease activity (CDA). In mice injected with MASP-2 duplex, there was a significant (p < 0.05) 90% decrease in ex vivo C4b deposition on mannan, with nearly complete elimination of MASP-2 in the circulation. MASP-2 silencing initially significantly decreased CDA by 60% but subsequently changed to a 40% decrease vs. control. Unexpectedly, GalNAc-siRNA-mediated knockdown of MASP-1 and MASP-2 revealed a marked effect of these proteins on the transcription of FD under normal physiological conditions, whereas LPS-induced inflammatory conditions reversed this effect on FD levels. LPS is recognized by Toll-like receptor 4 (TLR4), we found MBL not only binds to TLR4 an interaction with a Kd of 907 nM but also upregulated FD expression in differentiated adipocytes. We show that MASP-2 knockdown impairs the development of RA and that the interrelationship between proteins of the LP and the AP may extend to the transcriptional modulation of the FD gene.


Asunto(s)
Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Factor D del Complemento/metabolismo , Vía Alternativa del Complemento/genética , Lectina de Unión a Manosa de la Vía del Complemento/genética , Transcripción Genética/genética , Animales , Factor D del Complemento/genética , Expresión Génica , Lipopolisacáridos/farmacología , Hígado/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/genética , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Interferencia de ARN , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transfección
19.
Front Vet Sci ; 7: 571999, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33614753

RESUMEN

The study was aimed to evaluate the elicitation of highly pathogenic avian influenza (HPAI) virus (AIV) M2e and HA2-specific immunity in chicken to develop broad protective influenza vaccine against HPAI H5N1. Based on the analysis of Indian AIV H5N1 sequences, the conserved regions of extracellular domain of M2 protein (M2e) and HA2 were identified. Synthetic gene construct coding for M2e and two immunodominant HA2 conserved regions was designed and synthesized after codon optimization. The fusion recombinant protein (~38 kDa) was expressed in a prokaryotic system and characterized by Western blotting with anti-His antibody and anti-AIV polyclonal chicken serum. The M2e-HA2 fusion protein was found to be highly reactive with known AIV-positive and -negative chicken sera by ELISA. Two groups of specific pathogen-free (SPF) chickens were immunized (i/m) with M2e synthetic peptide and M2e-HA2 recombinant protein along with one control group with booster on the 14th day and 28th day with the same dose and route. Pre-immunization sera and whole blood were collected on day 0 followed by 3, 7, 14, 21, and 28 days and 2 weeks after the second booster (42 day). Lymphocyte proliferation assay by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) method revealed that the stimulation index (SI) was increased gradually from days 0 to 14 in the immunized group (p < 0.05) than that in control chicken. Toll-like receptor (TLR) mRNA analysis by RT-qPCR showed maximum upregulation in the M2e-HA2-vaccinated group compared to M2e- and sham-vaccinated groups. M2e-HA2 recombinant protein-based indirect ELISA revealed that M2e-HA2 recombinant fusion protein has induced strong M2e and HA2-specific antibody responses from 7 days post-primary immunization, and then the titer gradually increased after booster dose. Similarly, M2e peptide ELISA revealed that M2e-HA2 recombinant fusion protein elicited M2e-specific antibody from day 14 onward. In contrast, no antibody response was detected in the chicken immunized with synthetic peptide M2e alone or control group. Findings of this study will be very useful in future development of broad protective H5N1 influenza vaccine targeting M2e and HA2.

20.
Mol Ther Methods Clin Dev ; 13: 484-492, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31193726

RESUMEN

Complement-mediated damage to the neuromuscular junction (NMJ) is a key mechanism of pathology in myasthenia gravis (MG), and therapeutics inhibiting complement have shown evidence of efficacy in the treatment of MG. In this study, we describe the development of a subcutaneously administered N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C5 component of complement that silences C5 expression in the liver (ALN-CC5). Treatment of wild-type rodents with ALN-CC5 resulted in robust and durable suppression of liver C5 expression. Dose-dependent serum C5 suppression was observed in non-human primates, with a lowering of serum C5 of up to 97.5% and the concomitant inhibition of serum complement activity. C5 silencing was efficacious in ameliorating disease symptoms in two standard rat models of MG, demonstrating the key role of circulating C5 in pathology at the NMJ. Improvement in disease activity scores and NMJ pathology was observed at intermediate levels of complement activity inhibition, suggesting that complete ablation of complement activity may not be required for efficacy in MG. The pre-clinical studies of ALN-CC5 and efficacy of C5 silencing in rat models of MG support further clinical development of ALN-CC5 as a potential therapeutic for the treatment of MG and other complement-mediated disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA