Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
ACS Omega ; 9(34): 36761-36777, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220483

RESUMEN

Research into heterocyclic ligands has increased in popularity due to their versatile applications in the biomedical field. Quinoline derivatives with their transition metal complexes are popular scaffolding molecules in the ongoing pursuit of newer and more effective bioactive molecules. Subsequently, this work reports on the synthesis and possible biological application of new Zn(II) and Co(II) complexes with a bidentate quinoline derivative ligand (H2 L), [(H2 L):(E)-2-(((6-fluoro-2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol]. The ligand and its metal complexes were structurally characterized by spectroscopic methods (1H NMR, 13C NMR, Fourier transform infrared (FTIR), UV-vis, fluorescence, and mass spectroscopy), as well as by thermogravimetric and elemental analysis methods. The spectroscopic findings were further supported by density functional theory (DFT) and time-dependent (TD)-DFT calculations. The biological application was examined by investigating the inhibitory action of the complexes against bacterial strains using diffusion and agar dilution methods, and their profiles against two Gram-positive and Gram-negative bacterial strains were supported by molecular docking analysis. To rationalize the in vitro activity and establish the possible mechanism of action, the interactions and binding affinity of the ligand and complexes were investigated against three different bacterial enzymes (Escherichia coli DNA gyrase (PDB ID 6f86), E. coli dihydrofolate reductase B (PDB ID: 7r6g), and Staphylococcus aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ)) using AutoDock with the standard protocol. The MIC value of 0.20 µg/mL for zinc complex against E. coli and associated binding affinities -7.2 and -9.9 kcal/mol with DNA gyrase (PDB ID 6f86) and dihydrofolate reductase B (PDB ID: 7r6g), as well as the MIC value of 2.4 µg/mL for cobalt(II) complex against Staphylococcus aureus and the associated binding affinity of -10.5 kcal/mol with tyrosyl-tRNA synthetase (PDB ID: 1JIJ), revealed that the complexes' inhibitory actions were strong and comparable with those of the standard drug in the experiments. In addition, the ability of the new quinoline-based complexes to scavenge 1,1-diphenyl-picrylhydrazyl radicals was investigated; the findings suggested that the complexes exhibit potent antioxidant activities, which may be of therapeutic significance.

2.
ACS Omega ; 9(23): 25014-25026, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882155

RESUMEN

The utilization of metallodrugs as a viable alternative to organic molecules has gained significant attention in modern medicine. We hereby report synthesis of new imine quinoline ligand (IQL)-based Cu(II) complexes and evaluation of their potential biological applications. Syntheses of the ligand and complexes were achieved by condensation of 7-chloro-2-hydroxyquinoline-3-carbaldehyde and 2,2'-thiodianiline, followed by complexation with Cu(II) metal ions. The synthesized ligand and complexes were characterized using UV-vis spectroscopy, TGA/DTA, FTIR spectroscopy, 1H and 13C NMR spectroscopy, and pXRD. The pXRD diffractogram analysis revealed that the synthesized ligand and its complexes were polycrystalline systems, with nanolevel average crystallite sizes of 13.28, 31.47, and 11.57 nm for IQL, CuL, and CuL 2 , respectively. The molar conductivity confirmed the nonelectrolyte nature of the Cu(II) complexes. The biological activity of the synthesized ligand and its Cu(II) complexes was evaluated with in vitro assays, to examine anticancer activity against the MCF-7 human breast cancer cell line and antibacterial activity against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. The CuL complex had the highest cytotoxic potency against MCF-7 breast cancer cells, with an IC50 of 43.82 ± 2.351 µg/mL. At 100 µg/mL, CuL induced the largest reduction of cancer cell proliferation by 97%, whereas IQL reduced cell proliferation by 53% and CuL 2 by 28%. The minimum inhibitory concentration for CuL was found to be 12.5 µg/mL against the three tested pathogens. Evaluation of antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl revealed that CuL exhibited the highest antioxidant activity with IC50 of 153.3 ± 1.02 µg/mL. Molecular docking results showed strong binding affinities of CuL to active sites of S. aureus, E. coli, and estrogen receptor alpha, indicating its high biological activity compared to IQL and CuL 2 .

3.
Bioinorg Chem Appl ; 2023: 5019838, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075557

RESUMEN

Investigating and synthesizing potent antibacterial NPs using biological methods is highly preferred, and it involves nontoxic, cost-effective, and environmentally friendly chemicals and methods. Antibiotic drug resistance and oxidative stress have become a serious public health issue worldwide. Hence, the key objective of this study was to biologically synthesize and characterize the potent antibacterial Co3O4@ZnO core-shell nanoparticles for the antibacterial application. The radical scavenging ability of green synthesized Co3O4@ZnO core-shell nanoparticles was also determined. In this study, Co3O4@ZnO core-shell nanoparticles (CZCS NPs) have been synthesized using three different core to shell materials ratios of Co3O4 to ZnO (0.5 : 0.25 CZCS (1), 0.5 : 0.5 CZCS (2), and 0.5 : 0.75 M CZCS (3)) by employing Datura stramonium leaf extract. The polycrystalline nature of Co3O4@ZnO core-shell nanoparticles was investigated using the XRD and SAED characterization techniques. The investigated nanostructure of Co3O4@ZnO core-shell nanoparticles appeared with Co3O4 as the core and ZnO as an outer shell. Additionally, a variety of physicochemical properties of the nanoparticles were determined using various characterization techniques. The average crystallite sizes of CZCS (1), CZCS (2), and CZCS (3) were found to be 24 ± 1.4, 22 ± 1.5, and 25 ± 1.5 nm, respectively. The band gap energy values for CZCS (1), CZCS (2), and CZCS (3) determined from the UV-DRS data were found to be 2.75, 2.76, and 2.73 eV, respectively. The high inhibition activities against S. aureus, S. pyogenes, E. coli, and P. aeruginosa bacterial strains were obtained for the small size CZCS (2) nanoparticles at the concentration of 100 mg/mL with 22 ± 0.34, 19 ± 0.32, 18 ± 0.45, and 17 ± 0.32 mm values, respectively. The high inhibition performance of CZCS (2) nanoparticles against Gram-positive and Gram-negative bacteria which is even above the control drug ampicillin is because of its small size and synergistic effect. The percentage scavenging activity of Co3O4@ZnO core-shell nanoparticles was also studied and CZCS (2) nanoparticles showed a good scavenging capacity (86.87%) at 500 µg/mL with IC50 of 209.26 µg/mL.

4.
ACS Omega ; 8(27): 24371-24386, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457474

RESUMEN

Due to biochemically active secondary metabolites that assist in the reduction, stabilization, and capping of nanoparticles, plant-mediated nanoparticle synthesis is becoming more and more popular. This is because it allows for ecologically friendly, feasible, sustainable, and cost-effective green synthesis techniques. This study describes the biosynthesis of silver nanoparticles (AgNPs) functionalized with histidine and phenylalanine using the Lippia abyssinica (locally called koseret) plant leaf extract. The functionalization with amino acids was meant to enhance the biological activities of the AgNPs. The synthesized nanoparticles were characterized using UV-Visible absorption (UV-Vis), powder X-ray diffraction (pXRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The surface plasmonic resonance (SPR) peak at about 433 nm confirmed the biosynthesis of the AgNPs. FTIR spectra also revealed that the phytochemicals in the plant extract were responsible for the capping of the biogenically synthesized AgNPs. On the other hand, the TEM micrograph revealed that the morphology of AgNP-His had diameters ranging from 5 to 14 nm. The antibacterial activities of the synthesized nanoparticles against Gram-positive and Gram-negative bacteria showed a growth inhibition of 8.67 ± 1.25 and 11.00 ± 0.82 mm against Escherichia coli and Staphylococcus aureus, respectively, at a concentration of 62.5 µg/mL AgNP-His. Moreover, the nanoparticle has an antioxidant activity potential of 63.76 ± 1.25% at 250 µg/mL. The results showed that the green-synthesized AgNPs possess promising antioxidant and antibacterial activities with the potential for biological applications.

5.
Front Chem ; 11: 1173604, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37123873

RESUMEN

Organic-inorganic hybrid salt and mixed ligand Cr(III) complexes (Cr1 and Cr2) containing the natural flavonoid chrysin were synthesized. The metal complexes were characterized using UV-Vis, Fourier-transform infrared, MS, SEM-EDX, XRD, and molar conductance measurements. Based on experimental and DFT/TD-DFT calculations, octahedral geometries for the synthesized complexes were suggested. The powder XRD analysis confirms that the synthesized complexes were polycrystalline, with orthorhombic and monoclinic crystal systems having average crystallite sizes of 21.453 and 19.600 nm, percent crystallinities of 51% and 31.37%, and dislocation densities of 2.324 × 10-3 and 2.603 × 10-3 nm-2 for Cr1 and Cr2, respectively. The complexes were subjected to cytotoxicity, antibacterial, and antioxidant studies. The in vitro biological studies were supported with quantum chemical and molecular docking computational studies. Cr1 showed significant cytotoxicity to the MCF-7 cell line, with an IC50 value of 8.08 µM compared to 30.85 µM for Cr2 and 18.62 µM for cisplatin. Cr2 showed better antibacterial activity than Cr1. The higher E HOMO (-5.959 eV) and dipole moment (10.838 Debye) values of Cr2 obtained from the quantum chemical calculations support the observed in vitro antibacterial activities. The overall results indicated that Cr1 is a promising cytotoxic drug candidate.

6.
ACS Omega ; 8(14): 13421-13434, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37065050

RESUMEN

[Cu(C15H9O4)(C12H8N2)O2C2H3]·3H2O (1) and [Zn(C15H9O4)(C12H8N2)]O2C2H3 (2) have been synthesized and characterized by ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectrometry, thermogravimetric analysis/differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), and molar conductance, and supported by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. Square pyramidal and tetrahedral geometries are proposed for Cu(II) and Zn(II) complexes, respectively, and the XRD patterns showed the polycrystalline nature of the complexes. Furthermore, in vitro cytotoxic activity of the complexes was evaluated against the human breast cancer cell line (MCF-7). A Cu(II) centered complex with an IC50 value of 4.09 µM was more effective than the Zn(II) centered complex and positive control, cisplatin, which displayed IC50 values of 75.78 and 18.62 µM, respectively. In addition, the newly synthesized complexes experienced the innate antioxidant nature of the metal centers for scavenging the DPPH free radical (up to 81% at 400 ppm). The biological significance of the metal complexes was inferred from the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy band gap, which was found to be 2.784 and 3.333 eV, respectively for 1 and 2, compared to the ligands, 1,10-phenathroline (4.755 eV) and chrysin (4.403 eV). Moreover, the molecular docking simulations against estrogen receptor alpha (ERα; PDB: 5GS4) were strongly associated with the in vitro biological activity results (E B and K i are -8.35 kcal/mol and 0.76 µM for 1, -7.52 kcal/mol and 3.07 µM for 2, and -6.32 kcal/mol and 23.42 µM for cisplatin). However, more research on in vivo cytotoxicity is suggested to confirm the promising cytotoxicity results.

7.
Front Chem ; 10: 1053532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36405328

RESUMEN

Interest is increasingly focused on the use of transition metal complexes as biochemical, medical, analytical, pharmaceutical, agronomic, anticancer, and antibacterial agents. In this study, three complexes of [Zn(H2L)Cl] (1), [Cu(H2L)(H2O)(NO3)] (2) and [Ni(H2L)(NO3)].2H2O (3) were synthesized from a 2-chloroquinoline-3-carbaldehyde derived ligand [H3L = ((E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol. The compounds were characterized using physicochemical and spectroscopic methods. The results demonstrate that the free ligand behaves as a tridentate ligand with one oxygen and two nitrogen (ONN) donor atoms in 1:1 metal:ligand ratio. The formation constants of the complexes were found to be (K Zn(II) = 2.3 × 106, K Cu(II) = 2.9 × 106, and K Ni(II) = 3.8 × 105). The thermodynamic parameters indicated that the reactions were spontaneous with exothermic nature of metal-ligand interaction energies. Based on the analyses of the experimental (EDX, FTIR, PXRD, MS and TGA) and DFT results, a distorted tetrahedral, a distorted square pyramidal and square planar geometry for Zn(II), Cu(II) and Ni(II) complexes, respectively, were proposed. The B3LYP calculated IR frequencies and TD-B3LYP calculated absorption spectra were found to be in good agreement with the corresponding experimental results. The powder XRD data confirmed that the Zn(II), Cu(II) and Ni(II) complexes have polycrystalline nature with average crystallite sizes of 27.86, 33.54, 37.40 Å, respectively. In vitro antibacterial activity analyses of the complexes were studied with disk diffusion method, in which the complexes showed better activity than the precursor ligand. Particularly the Cu(II) complex showed higher percent activity index (62, 90%), than both Zn(II) (54, 82%) and Ni(II) (41, 68%) complexes against both E. coli and P. aeruginosa, respectively. Using the DPPH assay, the complexes were further assessed for their antioxidant capacities. All metal complexes showed improved antioxidant activity than the free ligand. Zn(II) and Cu(II) complexes, which had IC50 values of 10.46 and 8.62 µg/ml, respectively, showed the best antioxidant activity. The calculated results of Lipinski's rule of five also showed that the target complexes have drug-like molecular nature and similarly, the results of binding mode of action of these compounds against E. coli DNA gyrase B and P. aeruginosa LasR.DNA were found to be in good agreement with the in vitro biological activities.

8.
Front Chem ; 10: 1028957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247670

RESUMEN

Herein, we report the synthesis of mixed-ligand Cu(II) complexes of metformin and ciprofloxacin drugs together with 1,10-phenanthroline as a co-ligand. The synthesized complexes were characterized using different spectroscopic and spectrometric techniques. In vitro cytotoxic activity against human breast adenocarcinoma cancer cell line (MCF-7) as well as antibacterial activity against two gram-negative and two gram-positive bacterial strains were also investigated. The analyses of the experimental results were supported using quantum chemical calculations and molecular docking studies against estrogen receptor alpha (ERα; PDB: 5GS4). The cytotoxicity of the [Cu(II) (metformin) (1,10-phenanthroline)] complex (1), with IC50 of 4.29 µM, and the [Cu(II) (ciprofloxacin) (1,10-phenanthroline)] complex (2), with IC50 of 7.58 µM, were found to be more effective than the referenced drug, cisplatin which has IC50 of 18.62 µM against MCF-7 cell line. The molecular docking analysis is also in good agreement with the experimental results, with binding affinities of -7.35, -8.76 and -6.32 kcal/mol, respectively, for complexes 1, 2 and cisplatin against ERα. Moreover, complex 2 showed significant antibacterial activity against E. coli (inhibition diameter zone, IDZ, = 17.3 mm), P. aeruginosa (IDZ = 17.08 mm), and S. pyogen (IDZ = 17.33 mm), at 25 µg/ml compared to ciprofloxacin (IDZ = 20.0, 20.3, and 21.3 mm), respectively. Our BOILED-egg model indicated that the synthesized metal complexes have potentially minimal neurotoxicity than that of cisplatin.

9.
ACS Omega ; 7(30): 26336-26352, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35936450

RESUMEN

In the present work, two novel complexes of zinc(II) and copper(II) were synthesized from the ligand 2-((2-hydroxyethyl)amino)quinoline-3-carbaldehyde (H 2 L) in a 1:2 metal-to-ligand ratio in methanol. The complexes were characterized by UV-visible spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), mass spectrometry (MS), nuclear magnetic resonance (NMR) spectroscopy, and thermogravimetric analysis (TGA) experimental techniques and density functional theory (DFT) calculations. The spectral data revealed that the mono-deprotonated (HL) ligand acted as a bidentate ligand, which bound to both Zn(II) and Cu(II) ions via the nitrogen atom of the amine (N-H) and the hydroxyl (O-H) groups through the deprotonated oxygen atom. Formation constants and thermal analysis indicated that both metal complexes are stable up to 100 °C with thermodynamically favored chemical reactions. The Cu(II) complex showed antibacterial activities with the zones of inhibition of 20.90 ± 2.00 mm against Pseudomonas aeruginosa, 19.69 ± 0.71 mm against Staphylococcus aureus, and 18.58 ± 1.04 mm against Streptococcus pyogenes. These results are relatively higher compared with the Zn(II) complex at the same concentration. The minimum inhibitory concentration (MIC) results for the complexes also showed similar trends against the three bacteria. On the other hand, radical scavenging activities of both Cu(II) and Zn(II) complexes showed half-maximal inhibitory concentrations (IC50) of 4.72 and 8.2 µg/mL, respectively, while ascorbic acid (a positive control) has a value of 4.28 µg/mL. The Cu(II) complex exhibited better communication with the positive control, indicating its potential use for biological activities. The calculated and in silico molecular docking results also strongly support the experimental results.

10.
ACS Omega ; 7(5): 4389-4404, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35155932

RESUMEN

Herein, we report novel Co(II) and V(IV) complexes synthesized from an (E)-2-(((2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethan-1-ol ligand (L), cobalt(II) chloride hexahydrate, and vanadyl(IV) sulfate in methanolic solutions. The ligand and the complexes were characterized by 1H NMR spectroscopy,13C NMR spectroscopy, UV-visible spectroscopy, fluorescence spectroscopy, FT-IR spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), mass spectroscopy (MS), thermal analysis, and molar conductance. The FT-IR spectral data showed that the ligand adopted a tridentate fashion when binding with the metal ions via the nitrogen atoms of the imine (C=N) and amine (N-H), and the oxygen atom of the hydroxyl group (O-H). The PXRD and SEM results indicated that the complexes are amorphous in nature. The density functional theory (DFT) calculated absorption and IR spectra agree very well with the corresponding experimental results. The antibacterial activities of the free ligand and its complexes were evaluated using a paper disk diffusion method. The complexes have better percent activitiy index than the free ligand. The cobalt complex exhibited a more recognizable antibacterial activity than the vanadium complex, specifically against Pseudomonas aeruginosa with a mean inhibition zone of 18.62 ± 0.19 mm, when compared with the positive control, ciprofloxacin, with a mean inhibition zone of 22.98 ± 0.08 mm at the same concentration. Furthermore, the antioxidant activities of the free ligand and its metal complexes were also determined in vitro using 2,2-diphenyl-1-picrylhydrazyl. The ligand exhibited less in vitro antioxidant activity than its transition metal complexes, in which the cobalt complex has a better antioxidant activity with half-inhibitory concentrations (IC50 of 16.01 µg/mL) than the ligand and the vanadium complex. Quantum molecular descriptors from the DFT calculations further support the experimental results. Molecular docking analysis also shed more light on the biological activities of the novel cobalt and vanadium complexes.

11.
PLoS One ; 16(12): e0260853, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34890431

RESUMEN

Computer aided toxicity and pharmacokinetic prediction studies attracted the attention of pharmaceutical industries as an alternative means to predict potential drug candidates. In the present study, in-silico pharmacokinetic properties (ADME), drug-likeness, toxicity profiles of sixteen antidiabetic flavonoids that have ideal bidentate chelating sites for metal ion coordination were examined using SwissADME, Pro Tox II, vNN and ADMETlab web tools. Density functional theory (DFT) calculations were also employed to calculate quantum chemical descriptors of the compounds. Molecular docking studies against human alpha amylase were also conducted. The results were compared with the control drugs, metformin and acarbose. The drug-likeness prediction results showed that all flavonoids, except myricetin, were found to obey Lipinski's rule of five for their drug like molecular nature. Pharmacokinetically, chrysin, wogonin, genistein, baicalein, and apigenin showed best absorption profile with human intestinal absorption (HIA) value of ≥ 30%, compared to the other flavonoids. Baicalein, butein, ellagic acid, eriodyctiol, Fisetin and quercetin were predicted to show carcinogenicity. The flavonoid derivatives considered in this study are predicted to be suitable molecules for CYP3A probes, except eriodyctiol which interacts with P-glycoprotein (p-gp). The toxicological endpoints prediction analysis showed that the median lethal dose (LD50) values range from 159-3919 mg/Kg, of which baicalein and quercetin are found to be mutagenic whereas butein is found to be the only immunotoxin. Molecular docking studies showed that the significant interaction (-7.5 to -8.3 kcal/mol) of the studied molecules in the binding pocket of the α-amylase protein relative to the control metformin with the crucial amino acids Asp 197, Glu 233, Asp 197, Glu 233, Trp 59, Tyr 62, His 101, Leu 162, Arg 195, His 299 and Leu 165. Chrysin was predicted to be a ligand with high absorption and lipophilicity with 84.6% absorption compared to metformin (78.3%). Moreover, quantum chemical, ADMET, drug-likeness and molecular docking profiles predicted that chrysin is a good bidentate ligand.


Asunto(s)
Flavonoides/farmacocinética , Hipoglucemiantes/farmacocinética , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Acarbosa/química , Acarbosa/farmacocinética , Teoría Funcional de la Densidad , Diseño de Fármacos , Flavonoides/química , Humanos , Hipoglucemiantes/química , Absorción Intestinal , Metformina/química , Metformina/farmacocinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA