RESUMEN
BACKGROUND: One major barrier to HIV cure is the persistence of virus, possibly linked to an insufficient antiretroviral drug (ARV) distribution into tissues. OBJECTIVES: To draw the whole-body distribution of three antiretroviral drugs-tenofovir disoproxil fumarate, emtricitabine and dolutegravir-in non-human primates (NHPs). METHODS: Eight uninfected NHPs received a single injection of a solution containing the three ARVs. Forty-five different tissues were sampled 24 h after injection. RESULTS: Median tissue penetration factors (TPFs) were 45.4, 5.8 and 0.5 for tenofovir, emtricitabine and dolutegravir, respectively, and were statistically different between the three ARVs. Tissues were grouped by system, because TPFs were consistent according to these groups, and ranked in order of decreasing TPFs. The digestive system was the system with the highest tissue concentrations. Next came the two main sites of elimination, the liver and the kidney, as well as the tissues of the cardiopulmonary and urinary systems. Then, it was the whole lymphatic system. The next group included the reproductive system, the adipose tissue and the skin. The last two systems were the muscle and the CNS. The intra-tissue variability was rather low with a median coefficient of variation of the concentrations around 15% and no value greater than 80%. CONCLUSIONS: Overall, this study determines the first whole-body distribution in a validated NHP model. These data have important implications for future preclinical and clinical studies for the development of novel HIV therapies towards an HIV cure.
Asunto(s)
Emtricitabina , Compuestos Heterocíclicos con 3 Anillos , Oxazinas , Piperazinas , Piridonas , Tenofovir , Animales , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Emtricitabina/farmacocinética , Tenofovir/farmacocinética , Distribución Tisular , Masculino , Fármacos Anti-VIH/farmacocinética , Fármacos Anti-VIH/administración & dosificación , Femenino , Macaca mulattaRESUMEN
Distinct dendritic cell (DC) subsets play important roles in shaping immune responses. Circulating DC precursors (pre-DCs) are more susceptible to HIV infection in vitro, which may explain the inefficiency of immune responses against HIV. However, the interplay between HIV and pre-DC is not defined in vivo. We identify human pre-DC equivalents in the cynomolgus macaque and then analyze their dynamics during simian immunodeficiency virus (SIV) infection to illustrate a sharp decrease of blood pre-DCs in early SIV infection and accumulation in lymph nodes (LNs), where they neglect to upregulate CD83/CD86 or MHC-II. Additionally, SIV infection attenuates the capacity of stimulated LN pre-DCs to produce IL-12p40. Analysis of HIV cohorts provides correlation between costimulatory molecule expression on pre-DCs and T cell activation in spontaneous HIV controllers. These findings pinpoint certain dynamics and functional changes of pre-DCs during SIV infection, providing a deeper understanding of immune dysregulation mechanisms elicited in people living with HIV.
Asunto(s)
Células Dendríticas , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Síndrome de Inmunodeficiencia Adquirida del Simio/patología , Células Dendríticas/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Infecciones por VIH/sangre , Infecciones por VIH/patología , Macaca fascicularis , Activación de Linfocitos/inmunologíaRESUMEN
HIV remission can be achieved in some people, called post-treatment HIV controllers, after antiretroviral treatment discontinuation. Treatment initiation close to the time of infection was suggested to favor post-treatment control, but the circumstances and mechanisms leading to this outcome remain unclear. Here we evaluate the impact of early (week 4) vs. late (week 24 post-infection) treatment initiation in SIVmac251-infected male cynomolgus macaques receiving 2 years of therapy before analytical treatment interruption. We show that early treatment strongly promotes post-treatment control, which is not related to a lower frequency of infected cells at treatment interruption. Rather, early treatment favors the development of long-term memory CD8+ T cells with enhanced proliferative and SIV suppressive capacity that are able to mediate a robust secondary-like response upon viral rebound. Our model allows us to formally demonstrate a link between treatment initiation during primary infection and the promotion of post-treatment control and provides results that may guide the development of new immunotherapies for HIV remission.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Masculino , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Linfocitos T CD8-positivos , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Carga ViralRESUMEN
Background: The clinical outcome of COVID-19 pneumonia is highly variable. Few biological predictive factors have been identified. Genetic and immunological studies suggest that type 1 interferons (IFN) are essential to control SARS-CoV-2 infection. Objective: To study the link between change in blood IFN-α2 level and plasma SARS-Cov2 viral load over time and subsequent death in patients with severe and critical COVID-19. Methods: One hundred and forty patients from the CORIMUNO-19 cohort hospitalized with severe or critical COVID-19 pneumonia, all requiring oxygen or ventilation, were prospectively studied. Blood IFN-α2 was evaluated using the Single Molecule Array technology. Anti-IFN-α2 auto-Abs were determined with a reporter luciferase activity. Plasma SARS-Cov2 viral load was measured using droplet digital PCR targeting the Nucleocapsid gene of the SARS-CoV-2 positive-strand RNA genome. Results: Although the percentage of plasmacytoid dendritic cells was low, the blood IFN-α2 level was higher in patients than in healthy controls and was correlated to SARS-CoV-2 plasma viral load at entry. Neutralizing anti-IFN-α2 auto-antibodies were detected in 5% of patients, associated with a lower baseline level of blood IFN-α2. A longitudinal analysis found that a more rapid decline of blood IFN-α2 was observed in fatal versus surviving patients: mortality HR=3.15 (95% CI 1.14-8.66) in rapid versus slow decliners. Likewise, a high level of plasma SARS-CoV-2 RNA was associated with death risk in patients with severe COVID-19. Conclusion: These findings could suggest an interest in evaluating type 1 IFN treatment in patients with severe COVID-19 and type 1 IFN decline, eventually combined with anti-inflammatory drugs. Clinical trial registration: https://clinicaltrials.gov, identifiers NCT04324073, NCT04331808, NCT04341584.
Asunto(s)
COVID-19 , Interferón Tipo I , Humanos , Plasma , ARN Viral , SARS-CoV-2RESUMEN
Passive immunization using broadly neutralizing antibodies (bNAbs) is investigated in clinical settings to inhibit HIV-1 acquisition due to the lack of a preventive vaccine. However, bNAbs efficacy against highly infectious cell-associated virus transmission has been overlooked. HIV-1 transmission mediated by infected cells present in body fluids likely dominates infection and aids the virus in evading antibody-based immunity. Here, we show that the anti-N-glycans/V3 loop HIV-1 bNAb 10-1074 formulated for topical vaginal application in a microbicide gel provides significant protection against repeated cell-associated SHIV162P3 vaginal challenge in non-human primates. The treated group has a significantly lower infection rate than the control group, with 5 out of 6 animals fully protected from the acquisition of infection. The findings suggest that mucosal delivery of potent bnAbs may be a promising approach for preventing transmission mediated by infected cells and support the use of anti-HIV-antibody-based strategies as potential microbicides in human clinical trials.
Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Femenino , Humanos , Anticuerpos ampliamente neutralizantes , Macaca , Anticuerpos Neutralizantes , Anticuerpos Anti-VIHRESUMEN
Acquired demyelinating syndrome associated with myelin oligodendrocyte glycoprotein antibodies, named recently myelin oligodendrocyte glycoprotein-associated disease, represents >27% of this paediatric syndrome. Relapses occur in 40% of them, which may be associated with severe outcomes. Aiming to identify biomarker allowing to predict relapse, we measured both myelin oligodendrocyte glycoprotein antibodies and neurofilament light chain levels in blood samples of patients that are known to reflect axonal injuries in neurological diseases including demyelinating autoimmune disorders. Three groups of patients were selected: relapsing myelin oligodendrocyte glycoprotein-associated disease (n = 8), non-relapsing myelin oligodendrocyte glycoprotein-associated disease (n = 7) and control patients with non-inflammatory neurological diseases (n = 12). Neurofilament light chain concentrations were measured in plasma of these three groups of patients using the high-sensitivity single-molecule array method at onset of the disease and 6 months later. At onset of the disease, we found that levels of neurofilament light chain in blood of non-relapsing patients were significantly higher than in control patients (means: 98.36 ± 22.66 versus 12.47 ± 2.47â pg/mL, **P < 0.01, Kruskal-Wallis test). The mean neurofilament light chain value in relapsing patients (82.16 ± 38.41â pg/mL) was not significantly different from that in non-relapsing and in control patients. Plasma myelin oligodendrocyte glycoprotein antibody levels were 2.5-fold higher in relapsing than in non-relapsing patients without reaching significance (means: 15.26 ± 4.87 versus 5.96 ± 1.13; two-tailed Mann-Whitney U-test P = 0.119). Plasma neurofilament light chain correlated significantly with myelin oligodendrocyte glycoprotein antibody levels in relapsing (two-tailed Spearman r = 0.8, P = 0.0218) but not in non-relapsing (two-tailed Spearman r = 0.17, P = 0.71). Interestingly, the ratio of neurofilament light chain-to-myelin oligodendrocyte glycoprotein antibodies was significantly lower in relapsing than in non-relapsing patients (means: 5.19 ± 1.61 versus 21.87 ± 6.13; two-tailed Mann-Whitney U-test P = 0.014). These findings suggest that measuring both neurofilament light chain and myelin oligodendrocyte glycoprotein antibody levels in patients at onset of demyelinating disease could predict relapse of myelin oligodendrocyte glycoprotein-associated disease.
RESUMEN
It is of international priority to develop a vaccine against sexually transmitted Chlamydia trachomatis infections to combat the continued global spread of the infection. The optimal immunization strategy still remains to be fully elucidated. The aim of this study was to evaluate immunization strategies in a nonhuman primate (NHP) model. Cynomolgus macaques (Macaqua fascicularis) were immunized following different multi-component prime-boost immunization-schedules and subsequently challenged with C. trachomatis SvD in the lower genital tract. The immunization antigens included the recombinant protein antigen CTH522 adjuvanted with CAF01 or aluminium hydroxide, MOMP DNA antigen and MOMP vector antigens (HuAd5 MOMP and MVA MOMP). All antigen constructs were highly immunogenic raising significant systemic C. trachomatis-specific IgG responses. In particularly the CTH522 protein vaccinated groups raised a fast and strong pecificsIgG in serum. The mapping of specific B cell epitopes within the MOMP showed that all vaccinated groups, recognized epitopes near or within the variable domains (VD) of MOMP, with a consistent VD4 response in all animals. Furthermore, serum from all vaccinated groups were able to in vitro neutralize both SvD, SvE and SvF. Antibody responses were reflected on the vaginal and ocular mucosa, which showed detectable levels of IgG. Vaccines also induced C. trachomatis-specific cell mediated responses, as shown by in vitro stimulation and intracellular cytokine staining of peripheral blood mononuclear cells (PBMCs). In general, the protein (CTH522) vaccinated groups established a multifunctional CD4 T cell response, whereas the DNA and Vector vaccinated groups also established a CD8 T cells response. Following vaginal challenge with C. trachomatis SvD, several of the vaccinated groups showed accelerated clearance of the infection, but especially the DNA group, boosted with CAF01 adjuvanted CTH522 to achieve a balanced CD4/CD8 T cell response combined with an IgG response, showed accelerated clearance of the infection.
Asunto(s)
Chlamydia trachomatis , Leucocitos Mononucleares , Animales , Femenino , Vacunación , Inmunización , Primates , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Inmunoglobulina GRESUMEN
The development of animal models undergoing long-term antiretroviral treatment (ART) makes it possible to understand a number of immunological, virological, and pharmacological issues, key factors in the management of HIV infection. We aimed to pharmacologically validate a non-human primate (NHP) model treated in the long term with antiretroviral drugs after infection with the pathogenic SIVmac251 strain. A single-dose pharmacokinetic study of tenofovir disoproxil fumarate, emtricitabine, and dolutegravir was first conducted on 13 non-infected macaques to compare three different routes of administration. Then, 12 simian immunodeficiency virus (SIV)-infected (SIV+) macaques were treated with the same regimen for two years. Drug monitoring, virological efficacy, and safety were evaluated throughout the study. For the single-dose pharmacokinetic study, 24-h post-dose plasma concentrations for all macaques were above or close to 90% inhibitory concentrations and consistent with human data. During the two-year follow-up, the pharmacological data were consistent with those observed in humans, with low inter- and intra-individual variability. Rapid and sustained virological efficacy was observed for all macaques, with a good safety profile. Overall, our SIV+ NHP model treated with the ART combination over a two-year period is suitable for investigating the question of pharmacological sanctuaries in HIV infection and exploring strategies for an HIV cure.
RESUMEN
During chronic SIV/HIV infection, adipose tissue (AT) is the target of both antiretroviral treatment (ART) and the virus. AT might subsequently contribute to the low-grade systemic inflammation observed in patients on ART. To evaluate the inflammatory profile of AT during chronic SIV/HIV infection, we assayed subcutaneous and visceral abdominal AT from non-infected (SIV-, control), ART-naïve SIV-infected (SIV+) and ART-controlled SIV-infected (SIV+ART+) cynomolgus macaques for the mRNA expression of genes coding for factors related to inflammation. Significant differences were observed only when comparing the SIV+ART+ group with the SIV+ and/or SIV- groups. ART-treated infection impacted the metabolic fraction (with elevated expression of PPARγ and CEBPα), the extracellular matrix (with elevated expression of COL1A2 and HIF-1α), and the inflammatory profile. Both pro- and anti-inflammatory signatures were detected in AT, with greater mRNA expression of anti-inflammatory markers (adiponectin and CD163) and markers associated with inflammation (TNF-α, Mx1, CCL5 and CX3CL1). There were no intergroup differences in other markers (IL-6 and MCP-1). In conclusion, we observed marked differences in the immune and metabolic profiles of AT in the context of an ART-treated, chronic SIV infection; these differences were related more to ART than to SIV infection per se.
Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Adiponectina , Tejido Adiposo/metabolismo , Animales , Antiinflamatorios/uso terapéutico , Antirretrovirales/farmacología , Antirretrovirales/uso terapéutico , VIH , Inflamación/complicaciones , Interleucina-6 , Macaca fascicularis , Macaca mulatta , PPAR gamma , ARN Mensajero/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Factor de Necrosis Tumoral alfaRESUMEN
The COVID-19 pandemic has exemplified that rigorous evaluation in large animal models is key for translation from promising in vitro results to successful clinical implementation. Among the drugs that have been largely tested in clinical trials but failed so far to bring clear evidence of clinical efficacy is favipiravir, a nucleoside analogue with large spectrum activity against several RNA viruses in vitro and in small animal models. Here, we evaluate the antiviral activity of favipiravir against Zika or SARS-CoV-2 virus in cynomolgus macaques. In both models, high doses of favipiravir are initiated before infection and viral kinetics are evaluated during 7 to 15 days after infection. Favipiravir leads to a statistically significant reduction in plasma Zika viral load compared to untreated animals. However, favipiravir has no effects on SARS-CoV-2 viral kinetics, and 4 treated animals have to be euthanized due to rapid clinical deterioration, suggesting a potential role of favipiravir in disease worsening in SARS-CoV-2 infected animals. To summarize, favipiravir has an antiviral activity against Zika virus but not against SARS-CoV-2 infection in the cynomolgus macaque model. Our results support the clinical evaluation of favipiravir against Zika virus but they advocate against its use against SARS-CoV-2 infection.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Infección por el Virus Zika , Virus Zika , Amidas , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Macaca fascicularis , Pandemias , Primates , Pirazinas , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológicoRESUMEN
For people living with HIV, treatment with integrase-strand-transfer-inhibitors (INSTIs) can promote adipose tissue (AT) gain. We previously demonstrated that INSTIs can induce hypertrophy and fibrosis in AT of macaques and humans. By promoting energy expenditure, the emergence of beige adipocytes in white AT (beiging) could play an important role by limiting excess lipid storage and associated adipocyte dysfunction. We hypothesized that INSTIs could alter AT via beiging inhibition. Fibrosis and gene expression were measured in subcutaneous (SCAT) and visceral AT (VAT) from SIV-infected, dolutegravir-treated (SIVART) macaques. Beiging capacity was assessed in human adipose stromal cells (ASCs) undergoing differentiation and being exposed to dolutegravir, bictegravir, or raltegravir. Expression of beige markers, such as positive-regulatory-domain-containing-16 (PRDM16), were lower in AT of SIVART as compared to control macaques, whereas fibrosis-related genes were higher. Dolutegravir and bictegravir inhibited beige differentiation in ASCs, as shown by lower expression of beige markers and lower cell respiration. INSTIs also induced a hypertrophic insulin-resistant state associated with a pro-fibrotic phenotype. Our results indicate that adipocyte hypertrophy induced by INSTIs is involved via hypoxia (revealed by a greater hypoxia-inducible-factor-1-alpha gene expression) in fat fibrosis, beiging inhibition, and thus (via positive feedback), probably, further hypertrophy and associated insulin resistance.
Asunto(s)
Inhibidores de Integrasa VIH , Resistencia a la Insulina , Adipocitos/metabolismo , Tejido Adiposo , Amidas , Fibrosis , Inhibidores de Integrasa VIH/farmacología , Inhibidores de Integrasa VIH/uso terapéutico , Compuestos Heterocíclicos con 3 Anillos , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Hipertrofia/metabolismo , Hipoxia/metabolismo , Oxazinas , Piperazinas , PiridonasRESUMEN
The difficulty to unambiguously identify the various subsets of mononuclear phagocytes (MNPs) of the intestinal lamina propria has hindered our understanding of the initial events occurring after mucosal exposure to HIV-1. Here, we compared the composition and function of MNP subsets at steady-state and following ex vivo and in vivo viral exposure in human and macaque colorectal tissues. Combined evaluation of CD11c, CD64, CD103, and CX3CR1 expression allowed to differentiate lamina propria MNPs subsets common to both species. Among them, CD11c+ CX3CR1+ cells expressing CCR5 migrated inside the epithelium following ex vivo and in vivo exposure of colonic tissue to HIV-1 or SIV. In addition, the predominant population of CX3CR1high macrophages present at steady-state partially shifted to CX3CR1low macrophages as early as three days following in vivo SIV rectal challenge of macaques. Our analysis identifies CX3CR1+ MNPs as novel players in the early events of HIV-1 and SIV colorectal transmission.
RESUMEN
Deciphering the drug/virus/host interactions at infected cell reservoirs is a key leading to HIV-1 remission for which positron emission tomography (PET) imaging using radiolabeled antiretroviral (ARV) drugs is a powerful asset. Dolutegravir (DTG) is one of the preferred therapeutic options to treat HIV and can be isotopically labeled with fluorine-18. [18F]DTG was synthesized via a three-step approach of radiofluorination/nitrile reduction/peptide coupling with optimization for each step. Radiofluorination was performed on 2-fluoro-4-nitrobenzonitrile in 90% conversion followed by nitrile reduction using sodium borohydride and aqueous nickel(II) chloride with 72% conversion. Final peptide coupling reaction followed by HPLC purification and formulation afforded ready-to-inject [18F]DTG in 5.1 ± 0.8% (n = 10) decay-corrected radiochemical yield within 95 min. The whole process was automatized using a TRACERlab® FX NPro module, and quality control performed by analytical HPLC showed that [18F]DTG was suitable for in vivo injection with >99% chemical and radiochemical purity and a molar activity of 83 ± 18 GBq/µmol (n = 10). Whole-body distribution of [18F]DTG was performed by PET imaging on a healthy macaque and highlighted the elimination routes of the tracer. This study demonstrated the feasibility of in vivo [18F]DTG PET imaging and paved the way to explore drug/virus/tissues interactions in animals and humans.
RESUMEN
In spite of the efficacy of combinational antiretroviral treatment (cART), HIV-1 persists in the host and infection is associated with chronic inflammation, leading to an increased risk of comorbidities, such as cardiovascular diseases, neurocognitive disorders, and cancer. Myeloid cells, mainly monocytes and macrophages, have been shown to be involved in the immune activation observed in HIV-1 infection. However, less attention has been paid to neutrophils, the most abundant circulating myeloid cell, even though neutrophils are strongly involved in tissue damage and inflammation in several chronic diseases, in particular, autoimmune diseases. Herein, we performed a longitudinal characterization of neutrophil phenotype and we evaluated the interplay between neutrophils and T cells in the model of pathogenic SIVmac251 experimental infection of cynomolgus macaques. We report that circulating granulocytes consists mainly of immature CD10- neutrophils exhibiting a prime phenotype during primary and chronic infection. We found that neutrophil priming correlates with CD8+ T cell activation. Moreover, we provide the evidence that neutrophils are capable of modulating CD4+ and CD8+ T-cell proliferation and IFN-γ production in different ways depending on the time of infection. Thus, our study emphasizes the role of primed immature neutrophils in the modulation of T-cell responses in SIV infection.
Asunto(s)
Neutrófilos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Interferón gamma/metabolismo , Activación de Linfocitos , Macaca fascicularis , Neutrófilos/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , Virus de la Inmunodeficiencia de los Simios/metabolismoRESUMEN
OBJECTIVE: Antibody response to the messenger RNA (mRNA) COVID-19 vaccine has been shown to be diminished in rituximab (RTX)-treated patients. We undertook this study to compare humoral and T cell responses between healthy controls, patients with autoimmune diseases treated with RTX, and those treated with other immunosuppressants, all of whom had been vaccinated with 2 doses of the mRNA COVID-19 vaccine. METHODS: We performed anti-spike IgG and neutralization assays just before and 28 days after the second BNT162b2 (Pfizer-BioNTech) vaccine dose. The specific T cell response was assessed in activated CD4 and CD8 T cells using intracellular flow cytometry staining of cytokines (interferon-γ, tumor necrosis factor, and interleukin-2) after stimulation with SARS-CoV-2 spike peptide pools. RESULTS: A lower proportion of responders with neutralizing antibodies to the vaccine was observed in the RTX group (29%; n = 24) compared to the other immunosuppressants group (80%; n = 35) (P = 0.0001) and the healthy control group (92%; n = 26) (P < 0.0001). No patients treated with RTX in the last 6 months showed a response. Time since last infusion was the main factor influencing humoral response in RTX-treated patients. The functional CD4 and CD8 cellular responses to SARS-CoV-2 peptides for each single cytokine or polyfunctionality were not different in the RTX group compared to the other immunosuppressants group or the control group. In RTX-treated patients, the T cell response was not different between patients with and those without a humoral response. CONCLUSION: RTX induced a diminished antibody response to the mRNA COVID-19 vaccine, but the functional T cell response was not altered compared to healthy controls and autoimmune disease patients treated with other immunosuppressants. Further work is needed to assess the clinical protection granted by a functionally active T cell response in the absence of an anti-spike antibody response.
Asunto(s)
Anticuerpos Antivirales/inmunología , Enfermedades Autoinmunes , Vacuna BNT162/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19 , Enfermedades Autoinmunes/tratamiento farmacológico , COVID-19/prevención & control , Humanos , Inmunosupresores/uso terapéutico , ARN Mensajero , Rituximab/uso terapéutico , SARS-CoV-2RESUMEN
Patients with multiple myeloma are at high risk of severe forms of COVID-19. Despite data showing diminished response to vaccine, the era of highly efficient mRNA vaccine might be a gamechanger. We sought to examine response to mRNA vaccine between healthy controls (n = 28) and multiple myeloma (MM) patients (n = 27). Response was analyzed 1 month after the second dose of anti-SARS-CoV-2 BNT162b2 vaccine. Multiple myeloma patients showed diminished levels of Anti-Spike IgG levels compared to controls, but with a high proportion of patients achieving a humoral response (89% vs. 97% in controls). Neutralizing antibodies were present in 74% of patients versus 96% of controls. Patients under current daratumumab treatment had neutralizing activity of anti-SARS-CoV-2 antibodies. Multiple myeloma patients show diminished response to SARS-COV-2 vaccine but with still high response rate. The main potential risk factor of non-response to COVID-19 vaccine was uncontrolled disease under treatment.
Asunto(s)
COVID-19 , Mieloma Múltiple , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , ARN Mensajero/genética , SARS-CoV-2 , VacunaciónRESUMEN
Some viruses have established an equilibrium with their host. African green monkeys (AGM) display persistent high viral replication in the blood and intestine during Simian immunodeficiency virus (SIV) infection but resolve systemic inflammation after acute infection and lack intestinal immune or tissue damage during chronic infection. We show that NKG2a/c +CD8+ T cells increase in the blood and intestine of AGM in response to SIVagm infection in contrast to SIVmac infection in macaques, the latter modeling HIV infection. NKG2a/c +CD8+ T cells were not expanded in lymph nodes, and CXCR5+NKG2a/c +CD8+ T cell frequencies further decreased after SIV infection. Genome-wide transcriptome analysis of NKG2a/c +CD8+ T cells from AGM revealed the expression of NK cell receptors, and of molecules with cytotoxic effector, gut homing, and immunoregulatory and gut barrier function, including CD73. NKG2a/c +CD8+ T cells correlated negatively with IL-23 in the intestine during SIVmac infection. The data suggest a potential regulatory role of NKG2a/c +CD8+ T cells in intestinal inflammation during SIV/HIV infections.
RESUMEN
Highly efficient CD8+ T cells are associated with natural HIV control, but it has remained unclear how these cells are generated and maintained. We have used a macaque model of spontaneous SIVmac251 control to monitor the development of efficient CD8+ T cell responses. Our results show that SIV-specific CD8+ T cells emerge during primary infection in all animals. The ability of CD8+ T cells to suppress SIV is suboptimal in the acute phase but increases progressively in controller macaques before the establishment of sustained low-level viremia. Controller macaques develop optimal memory-like SIV-specific CD8+ T cells early after infection. In contrast, a persistently skewed differentiation phenotype characterizes memory SIV-specific CD8+ T cells in non-controller macaques. Accordingly, the phenotype of SIV-specific CD8+ T cells defined early after infection appears to favor the development of protective immunity in controllers, whereas SIV-specific CD8+ T cells in non-controllers fail to gain antiviral potency, feasibly as a consequence of early defects imprinted in the memory pool.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Enfermedad Crónica , Haplotipos/genética , Memoria Inmunológica , Ganglios Linfáticos/patología , Recuento de Linfocitos , Macaca fascicularis , Complejo Mayor de Histocompatibilidad , Síndrome de Inmunodeficiencia Adquirida del Simio/sangre , ViremiaRESUMEN
BACKGROUND: HIV-1 sexual transmission occurs mostly through infected semen, which contains both free virions and infected leukocytes. Transmission initiated by infected cells has been shown by several in vitro and in vivo studies and a reduced capacity of broadly neutralizing antibodies (bNAbs) to inhibit cell-to-cell transmission has also been reported. However, due to limitations of available experimental models, there is yet no clarity to which extend bNAbs can prevent transmission mediated by semen leukocytes. METHODS: We developed a novel in vitro assay to measure cell-cell transmission that makes use of splenocytes or CD45+ semen leukocytes collected from acutely SHIV162P3-infected cynomolgus macaques. A panel of 11 bNAbs was used either alone or in combination to assess their inhibitory potential against both cell-free and cell-cell infection. FINDINGS: Splenocytes and semen leucocytes displayed a similar proportion of CD4+T-cell subsets. Either cell type transferred infection in vitro to target TZM-bl cells and PBMCs. Moreover, infection of macaques was achieved following intravaginal challenge with splenocytes. The anti-N-glycans/V3 loop bNAb 10-1074 was highly efficient against cell-associated transmission mediated by infected spleen cells and its potency was maintained when transmission was mediated by CD45+ semen leukocytes. INTERPRETATION: These results support the use of bNAbs in preventative or therapeutic studies aiming to block transmission events mediated not only by free viral particles but also by infected cells. Our experimental system could be used to predict in vivo efficacy of bNAbs. FUNDING: This work was funded by the ANRS and the European Commission.
Asunto(s)
Anticuerpos ampliamente neutralizantes/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/transmisión , Semen/virología , Animales , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/virología , Modelos Animales de Enfermedad , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/patogenicidad , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Macaca fascicularis/virología , Semen/efectos de los fármacosRESUMEN
BACKGROUND: Aging is characterized by adipose tissue senescence, inflammation, and fibrosis, with trunk fat accumulation. Aging HIV-infected patients have a higher risk of trunk fat accumulation than uninfected individuals-suggesting that viral infection has a role in adipose tissue aging. We previously demonstrated that HIV/SIV infection and the Tat and Nef viral proteins were responsible for adipose tissue fibrosis and impaired adipogenesis. We hypothesized that SIV/HIV infection and viral proteins could induce adipose tissue senescence and thus lead to adipocyte dysfunctions. METHODS: Features of tissue senescence were evaluated in subcutaneous and visceral adipose tissues of SIV-infected macaques and in human adipose stem cells (ASCs) exposed to Tat or Nef for up to 30 days. RESULTS: p16 expression and p53 activation were higher in adipose tissue of SIV-infected macaques than in control macaques, indicating adipose tissue senescence. Tat and Nef induced higher senescence in ASCs, characterized by higher levels of senescence-associated beta-galactosidase activity, p16 expression, and p53 activation vs. control cells. Treatment with Tat and Nef also induced oxidative stress and mitochondrial dysfunction. Prevention of oxidative stress (using N-acetyl-cysteine) reduced senescence in ASCs. Adipocytes having differentiated from Nef-treated ASCs displayed alterations in adipogenesis with lower levels of triglyceride accumulation and adipocyte marker expression and secretion, and insulin resistance. CONCLUSION: HIV/SIV promotes adipose tissue senescence, which in turn may alter adipocyte function and contribute to insulin resistance.