Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Br J Ophthalmol ; 105(9): 1231-1237, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32980820

RESUMEN

BACKGROUND/AIMS: Accurate isolation and quantification of intraocular dimensions in the anterior segment (AS) of the eye using optical coherence tomography (OCT) images is important in the diagnosis and treatment of many eye diseases, especially angle-closure glaucoma. METHOD: In this study, we developed a deep convolutional neural network (DCNN) for the localisation of the scleral spur; moreover, we introduced an information-rich segmentation approach for this localisation problem. An ensemble of DCNNs for the segmentation of AS structures (iris, corneosclera shell adn anterior chamber) was developed. Based on the results of two previous processes, an algorithm to automatically quantify clinically important measurements were created. 200 images from 58 patients (100 eyes) were used for testing. RESULTS: With limited training data, the DCNN was able to detect the scleral spur on unseen anterior segment optical coherence tomography (ASOCT) images as accurately as an experienced ophthalmologist on the given test dataset and simultaneously isolated the AS structures with a Dice coefficient of 95.7%. We then automatically extracted eight clinically relevant ASOCT measurements and proposed an automated quality check process that asserts the reliability of these measurements. When combined with an OCT machine capable of imaging multiple radial sections, the algorithms can provide a more complete objective assessment. The total segmentation and measurement time for a single scan is less than 2 s. CONCLUSION: This is an essential step towards providing a robust automated framework for reliable quantification of ASOCT scans, for applications in the diagnosis and management of angle-closure glaucoma.


Asunto(s)
Algoritmos , Segmento Anterior del Ojo/diagnóstico por imagen , Aprendizaje Profundo , Glaucoma de Ángulo Cerrado/diagnóstico , Tomografía de Coherencia Óptica/métodos , Femenino , Estudios de Seguimiento , Gonioscopía , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reproducibilidad de los Resultados
2.
Biomed Opt Express ; 11(11): 6356-6378, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33282495

RESUMEN

Recently proposed deep learning (DL) algorithms for the segmentation of optical coherence tomography (OCT) images to quantify the morphological changes to the optic nerve head (ONH) tissues during glaucoma have limited clinical adoption due to their device specific nature and the difficulty in preparing manual segmentations (training data). We propose a DL-based 3D segmentation framework that is easily translatable across OCT devices in a label-free manner (i.e. without the need to manually re-segment data for each device). Specifically, we developed 2 sets of DL networks: the 'enhancer' (enhance OCT image quality and harmonize image characteristics from 3 devices) and the 'ONH-Net' (3D segmentation of 6 ONH tissues). We found that only when the 'enhancer' was used to preprocess the OCT images, the 'ONH-Net' trained on any of the 3 devices successfully segmented ONH tissues from the other two unseen devices with high performance (Dice coefficients > 0.92). We demonstrate that is possible to automatically segment OCT images from new devices without ever needing manual segmentation data from them.

3.
Transl Vis Sci Technol ; 9(2): 23, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32818084

RESUMEN

Purpose: To remove blood vessel shadows from optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: Volume scans consisting of 97 horizontal B-scans were acquired through the center of the ONH using a commercial OCT device for both eyes of 13 subjects. A custom generative adversarial network (named DeshadowGAN) was designed and trained with 2328 B-scans in order to remove blood vessel shadows in unseen B-scans. Image quality was assessed qualitatively (for artifacts) and quantitatively using the intralayer contrast-a measure of shadow visibility ranging from 0 (shadow-free) to 1 (strong shadow). This was computed in the retinal nerve fiber layer (RNFL), the inner plexiform layer (IPL), the photoreceptor (PR) layer, and the retinal pigment epithelium (RPE) layer. The performance of DeshadowGAN was also compared with that of compensation, the standard for shadow removal. Results: DeshadowGAN decreased the intralayer contrast in all tissue layers. On average, the intralayer contrast decreased by 33.7 ± 6.81%, 28.8 ± 10.4%, 35.9 ± 13.0%, and 43.0 ± 19.5% for the RNFL, IPL, PR layer, and RPE layer, respectively, indicating successful shadow removal across all depths. Output images were also free from artifacts commonly observed with compensation. Conclusions: DeshadowGAN significantly corrected blood vessel shadows in OCT images of the ONH. Our algorithm may be considered as a preprocessing step to improve the performance of a wide range of algorithms including those currently being used for OCT segmentation, denoising, and classification. Translational Relevance: DeshadowGAN could be integrated to existing OCT devices to improve the diagnosis and prognosis of ocular pathologies.


Asunto(s)
Aprendizaje Profundo , Disco Óptico , Algoritmos , Humanos , Retina , Tomografía de Coherencia Óptica
4.
Br J Ophthalmol ; 104(3): 301-311, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31640973

RESUMEN

Glaucoma is a result of irreversible damage to the retinal ganglion cells. While an early intervention could minimise the risk of vision loss in glaucoma, its asymptomatic nature makes it difficult to diagnose until a late stage. The diagnosis of glaucoma is a complicated and expensive effort that is heavily dependent on the experience and expertise of a clinician. The application of artificial intelligence (AI) algorithms in ophthalmology has improved our understanding of many retinal, macular, choroidal and corneal pathologies. With the advent of deep learning, a number of tools for the classification, segmentation and enhancement of ocular images have been developed. Over the years, several AI techniques have been proposed to help detect glaucoma by analysis of functional and/or structural evaluations of the eye. Moreover, the use of AI has also been explored to improve the reliability of ascribing disease prognosis. This review summarises the role of AI in the diagnosis and prognosis of glaucoma, discusses the advantages and challenges of using AI systems in clinics and predicts likely areas of future progress.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aprendizaje Profundo , Glaucoma/terapia , Oftalmología/métodos , Humanos
5.
Sci Rep ; 9(1): 14454, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31595006

RESUMEN

Optical coherence tomography (OCT) has become an established clinical routine for the in vivo imaging of the optic nerve head (ONH) tissues, that is crucial in the diagnosis and management of various ocular and neuro-ocular pathologies. However, the presence of speckle noise affects the quality of OCT images and its interpretation. Although recent frame-averaging techniques have shown to enhance OCT image quality, they require longer scanning durations, resulting in patient discomfort. Using a custom deep learning network trained with 2,328 'clean B-scans' (multi-frame B-scans; signal averaged), and their corresponding 'noisy B-scans' (clean B-scans + Gaussian noise), we were able to successfully denoise 1,552 unseen single-frame (without signal averaging) B-scans. The denoised B-scans were qualitatively similar to their corresponding multi-frame B-scans, with enhanced visibility of the ONH tissues. The mean signal to noise ratio (SNR) increased from 4.02 ± 0.68 dB (single-frame) to 8.14 ± 1.03 dB (denoised). For all the ONH tissues, the mean contrast to noise ratio (CNR) increased from 3.50 ± 0.56 (single-frame) to 7.63 ± 1.81 (denoised). The mean structural similarity index (MSSIM) increased from 0.13 ± 0.02 (single frame) to 0.65 ± 0.03 (denoised) when compared with the corresponding multi-frame B-scans. Our deep learning algorithm can denoise a single-frame OCT B-scan of the ONH in under 20 ms, thus offering a framework to obtain superior quality OCT B-scans with reduced scanning times and minimal patient discomfort.


Asunto(s)
Aprendizaje Profundo , Disco Óptico/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Humanos , Tomografía de Coherencia Óptica/normas
6.
Biomed Opt Express ; 9(7): 3244-3265, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29984096

RESUMEN

Given that the neural and connective tissues of the optic nerve head (ONH) exhibit complex morphological changes with the development and progression of glaucoma, their simultaneous isolation from optical coherence tomography (OCT) images may be of great interest for the clinical diagnosis and management of this pathology. A deep learning algorithm (custom U-NET) was designed and trained to segment 6 ONH tissue layers by capturing both the local (tissue texture) and contextual information (spatial arrangement of tissues). The overall Dice coefficient (mean of all tissues) was 0.91 ± 0.05 when assessed against manual segmentations performed by an expert observer. Further, we automatically extracted six clinically relevant neural and connective tissue structural parameters from the segmented tissues. We offer here a robust segmentation framework that could also be extended to the 3D segmentation of the ONH tissues.

7.
Invest Ophthalmol Vis Sci ; 59(1): 63-74, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29313052

RESUMEN

Purpose: To develop a deep learning approach to digitally stain optical coherence tomography (OCT) images of the optic nerve head (ONH). Methods: A horizontal B-scan was acquired through the center of the ONH using OCT (Spectralis) for one eye of each of 100 subjects (40 healthy and 60 glaucoma). All images were enhanced using adaptive compensation. A custom deep learning network was then designed and trained with the compensated images to digitally stain (i.e., highlight) six tissue layers of the ONH. The accuracy of our algorithm was assessed (against manual segmentations) using the dice coefficient, sensitivity, specificity, intersection over union (IU), and accuracy. We studied the effect of compensation, number of training images, and performance comparison between glaucoma and healthy subjects. Results: For images it had not yet assessed, our algorithm was able to digitally stain the retinal nerve fiber layer + prelamina, the RPE, all other retinal layers, the choroid, and the peripapillary sclera and lamina cribrosa. For all tissues, the dice coefficient, sensitivity, specificity, IU, and accuracy (mean) were 0.84 ± 0.03, 0.92 ± 0.03, 0.99 ± 0.00, 0.89 ± 0.03, and 0.94 ± 0.02, respectively. Our algorithm performed significantly better when compensated images were used for training (P < 0.001). Besides offering a good reliability, digital staining also performed well on OCT images of both glaucoma and healthy individuals. Conclusions: Our deep learning algorithm can simultaneously stain the neural and connective tissues of the ONH, offering a framework to automatically measure multiple key structural parameters of the ONH that may be critical to improve glaucoma management.


Asunto(s)
Algoritmos , Glaucoma/diagnóstico , Aprendizaje Automático , Fibras Nerviosas/patología , Disco Óptico/patología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Células Ganglionares de la Retina/patología , Tomografía de Coherencia Óptica/métodos , Campos Visuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA