Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Magn Reson Med ; 89(6): 2432-2440, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36740894

RESUMEN

PURPOSE: To quantify the variations of the power-law dependences on diffusion time t or gradient frequency f $$ f $$ of extracellular water diffusion measured by diffusion MRI (dMRI). METHODS: Model cellular systems containing only extracellular water were used to investigate the t / f $$ t/f $$ dependence of D ex $$ {D}_{ex} $$ , the extracellular diffusion coefficient. Computer simulations used a randomly packed tissue model with realistic intracellular volume fractions and cell sizes. DMRI measurements were performed on samples consisting of liposomes containing heavy water(D2 O, deuterium oxide) dispersed in regular water (H2 O). D ex $$ {D}_{ex} $$ was obtained over a broad t $$ t $$ range (∼1-1000 ms) and then fit power-law equations D ex ( t ) = D const + const · t - ϑ t $$ {D}_{ex}(t)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {t}^{-{\vartheta}_t} $$ and D ex ( f ) = D const + const · f ϑ f $$ {D}_{ex}(f)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {f}^{\vartheta_f} $$ . RESULTS: Both simulated and experimental results suggest that no single power-law adequately describes the behavior of D ex $$ {D}_{ex} $$ over the range of diffusion times of most interest in practical dMRI. Previous theoretical predictions are accurate over only limited t $$ t $$ ranges; for example, θ t = θ f = - 1 2 $$ {\theta}_t={\theta}_f=-\frac{1}{2} $$ is valid only for short times, whereas θ t = 1 $$ {\theta}_t=1 $$ or θ f = 3 2 $$ {\theta}_f=\frac{3}{2} $$ is valid only for long times but cannot describe other ranges simultaneously. For the specific t $$ t $$ range of 5-70 ms used in typical human dMRI measurements, θ t = θ f = 1 $$ {\theta}_t={\theta}_f=1 $$ matches the data well empirically. CONCLUSION: The optimal power-law fit of extracellular diffusion varies with diffusion time. The dependency obtained at short or long t $$ t $$ limits cannot be applied to typical dMRI measurements in human cancer or liver. It is essential to determine the appropriate diffusion time range when modeling extracellular diffusion in dMRI-based quantitative microstructural imaging.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Neoplasias , Humanos , Imagen de Difusión por Resonancia Magnética/métodos , Difusión , Modelos Biológicos , Simulación por Computador
2.
Magn Reson Imaging ; 94: 144-150, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36209946

RESUMEN

BACKGROUND: It remains a clinical challenge to differentiate brain tumors from radiation-induced necrosis in the brain. Despite significant improvements, no single MRI method has been validated adequately in the clinical setting. METHODS: Multi-parametric MRI (mpMRI) was performed to differentiate 9L gliosarcoma from radiation necrosis in animal models. Five types of MRI methods probed complementary information on different scales i.e., T2 (relaxation), CEST based APT (probing mobile proteins/peptides) and rNOE (mobile macromolecules), qMT (macromolecules), diffusion based ADC (cell density) and SSIFT iAUC (cell size), and perfusion based DSC (blood volume and flow). RESULTS: For single MRI parameters, iAUC and ADC provide the best discrimination of radiation necrosis and brain tumor. For mpMRI, a combination of iAUC, ADC, and APT shows the best classification performance based on a two-step analysis with the Lasso and Ridge regressions. CONCLUSION: A general mpMRI approach is introduced to choosing candidate multiple MRI methods, identifying the most effective parameters from all the mpMRI parameters, and finding the appropriate combination of chosen parameters to maximize the classification performance to differentiate tumors from radiation necrosis.


Asunto(s)
Neoplasias Encefálicas , Imágenes de Resonancia Magnética Multiparamétrica , Traumatismos por Radiación , Animales , Medios de Contraste , Roedores , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Imagen por Resonancia Magnética/métodos , Necrosis/diagnóstico por imagen
3.
Adv Radiat Oncol ; 7(6): 101014, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060637

RESUMEN

Purpose: Our purpose was to develop a rodent model of brain radionecrosis using clinical linear accelerator based stereotactic radiosurgery. Methods and Materials: Single fraction maximum prescription points in the mouse's left hemisphere were irradiated using linear accelerator-based stereotactic radiosurgery with multiple arcs at 60 (n = 5), 100 (n = 5), and 140 (n = 5) Gy. Rats (n = 6) were similarly treated with 140 Gy. Gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) was used to track radiation injury in mice over weeks (100 and 140 Gy) or months (60 Gy). Target accuracy was measured by the distance from the prescription point to the center of the earliest Gd-MRI enhancement. Confirmation of necrosis via histology was performed at the subject endpoints. Results: Radiation injury as indicated by Gd-MRI was first identified at 2 weeks (140 Gy), 4 to 6 weeks (100 Gy), and 8 months (60 Gy). A volumetric time course showed rapid growth in the volume of Gd-MRI signal enhancement after the appearance of apparent necrosis. Histopathologic features were consistent with radionecrosis. Conclusions: The presented method uses a commonly available clinical linear accelerator to induce radiation necrosis in both mice and rats. The treatment is modeled after patient therapy for a more direct model of human tissue under a range of doses used in clinical neuro-ablation techniques. The short time to onset of apparent necrosis, accurate targeting of the prescription point, high incidence of necrosis, and similar pathologic features make this a suitable animal model for further research in radionecrosis.

4.
Cancer Res ; 82(19): 3603-3613, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-35877201

RESUMEN

Brain metastasis is a common characteristic of late-stage lung cancers. High doses of targeted radiotherapy can control tumor growth in the brain but can also result in radiotherapy-induced necrosis. Current methods are limited for distinguishing whether new parenchymal lesions following radiotherapy are recurrent tumors or radiotherapy-induced necrosis, but the clinical management of these two classes of lesions differs significantly. Here, we developed, validated, and evaluated a new MRI technique termed selective size imaging using filters via diffusion times (SSIFT) to differentiate brain tumors from radiotherapy necrosis in the brain. This approach generates a signal filter that leverages diffusion time dependence to establish a cell size-weighted map. Computer simulations in silico, cultured cancer cells in vitro, and animals with brain tumors in vivo were used to comprehensively validate the specificity of SSIFT for detecting typical large cancer cells and the ability to differentiate brain tumors from radiotherapy necrosis. SSIFT was also implemented in patients with metastatic brain cancer and radiotherapy necrosis. SSIFT showed high correlation with mean cell sizes in the relevant range of less than 20 µm. The specificity of SSIFT for brain tumors and reduced contrast in other brain etiologies allowed SSIFT to differentiate brain tumors from peritumoral edema and radiotherapy necrosis. In conclusion, this new, cell size-based MRI method provides a unique contrast to differentiate brain tumors from other pathologies in the brain. SIGNIFICANCE: This work introduces and provides preclinical validation of a new diffusion MRI method that exploits intrinsic differences in cell sizes to distinguish brain tumors and radiotherapy necrosis.


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Tamaño de la Célula , Diagnóstico Diferencial , Humanos , Imagen por Resonancia Magnética/métodos , Necrosis/diagnóstico por imagen , Recurrencia Local de Neoplasia/diagnóstico , Traumatismos por Radiación/diagnóstico por imagen , Traumatismos por Radiación/etiología
5.
NMR Biomed ; 35(12): e4799, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35794795

RESUMEN

The goal of the current study is to include transcytolemmal water exchange in MR cell size imaging using the IMPULSED model for more accurate characterization of tissue cellular properties (e.g., apparent volume fraction of intracellular space v in ) and quantification of indicators of transcytolemmal water exchange. We propose a heuristic model that incorporates transcytolemmal water exchange into a multicompartment diffusion-based method (IMPULSED) that was developed previously to extract microstructural parameters (e.g., mean cell size d and apparent volume fraction of intracellular space v in ) assuming no water exchange. For t diff ≤ 5 ms, the water exchange can be ignored, and the signal model is the same as the IMPULSED model. For t diff ≥ 30 ms, we incorporated the modified Kärger model that includes both restricted diffusion and exchange between compartments. Using simulations and previously published in vitro cell data, we evaluated the accuracy and precision of model-derived parameters and determined how they are dependent on SNR and imaging parameters. The joint model provides more accurate d values for cell sizes ranging from 10 to 12 microns when water exchange is fast (e.g., intracellular water pre-exchange lifetime τ in ≤ 100 ms) than IMPULSED, and reduces the bias of IMPULSED-derived estimates of v in , especially when water exchange is relatively slow (e.g., τ in > 200 ms). Indicators of transcytolemmal water exchange derived from the proposed joint model are linearly correlated with ground truth τ in values and can detect changes in cell membrane permeability induced by saponin treatment in murine erythroleukemia cancer cells. Our results suggest this joint model not only improves the accuracy of IMPULSED-derived microstructural parameters, but also provides indicators of water exchange that are usually ignored in diffusion models of tissues.


Asunto(s)
Agua Corporal , Ratones , Animales , Agua Corporal/metabolismo , Tamaño de la Célula , Permeabilidad de la Membrana Celular , Difusión
6.
Int J Radiat Oncol Biol Phys ; 113(5): 960-966, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595157

RESUMEN

PURPOSE: Effective treatment options for refractory depression are needed. Recent advancements permit both precise ablative radiation and functional neurologic connectome analysis using standard magnetic resonance imaging. We combined these innovations to perform stereotactic radiosurgical capsulotomy for the treatment of medically refractory major depressive disorder and study connectome response using a novel tractography-based approach. METHODS AND MATERIALS: Patients with medically refractory depression were enrolled on a prospective pilot single-arm observational trial from 2020 to 2021 at a single academic tertiary referral center. Bilateral ablation of the anterior limb of the internal capsule was accomplished by mask-based linear accelerator stereotactic radiosurgery. Beck's Depression Inventory measured efficacy. Montreal Cognitive Assessment evaluated cognition. RESULTS: Three patients were enrolled. Depression burden was improved by 88% at 12-month follow-up and by 55% at 18-month follow-up for patient 1 and 2, respectively. Patient 1 discontinued ketamine therapy, and patient 2 discontinued electroconvulsive therapy. Patient 3 reported global improvement in symptoms and function at 3 months. All 3 patients had reduction or resolution of suicidal ideation. No patient experienced cognitive decline or neurologic toxicity, and Montreal Cognitive Assessment score, as well as subjective patient-reported evaluations of concentration and attention, were superior after treatment. Tractography confirmed intended disruption of the cortico-striatal-thalamo-cortical loop with structural reorganization in the connectome. Connectome change was consistent between patients. Observed increases in caudate and putamen connectivity and decreases in thalamic connectivity may explain improved concentration, attention, and depression. The diversity and magnitude of connectome change may correlate with degree of clinical response. CONCLUSIONS: In 3 patients with refractory depression, radiosurgical capsulotomy significantly reduced the burden of depression. Functional connectome reorganization offers neurobiological evidence to support further investigations of the role of radiosurgery in depression.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Trastorno Obsesivo Compulsivo , Radiocirugia , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/cirugía , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/cirugía , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/patología , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/cirugía , Estudios Prospectivos , Radiocirugia/métodos
7.
Magn Reson Imaging ; 77: 109-123, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338562

RESUMEN

Cytological features such as cell size and intracellular morphology provide fundamental information on cell status and hence may provide specific information on changes that arise within biological tissues. Such information is usually obtained by invasive biopsy in current clinical practice, which suffers several well-known disadvantages. Recently, novel MRI methods such as IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) have been developed for direct measurements of mean cell size non-invasively. The IMPULSED protocol is based on using temporal diffusion spectroscopy (TDS) to combine measurements of water diffusion over a wide range of diffusion times to probe cellular microstructure over varying length scales. IMPULSED has been shown to provide rapid, robust, and reliable mapping of mean cell size and is suitable for clinical imaging. More recently, cell size distributions have also been derived by appropriate analyses of data acquired with IMPULSED or similar sequences, which thus provides MRI-cytometry. This review summarizes the basic principles, practical implementations, validations, and example applications of MR cell size imaging based on TDS and demonstrates how cytometric information can be used in various applications. In addition, the limitations and potential future directions of MR cytometry are identified including the diagnosis of nonalcoholic steatohepatitis of the liver and the assessment of treatment response of cancers.


Asunto(s)
Tamaño de la Célula , Análisis Espectral , Difusión , Humanos , Imagen por Resonancia Magnética
8.
Magn Reson Med ; 85(2): 748-761, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32936478

RESUMEN

PURPOSE: This report introduces and validates a new diffusion MRI-based method, termed MRI-cytometry, which can noninvasively map intravoxel, nonparametric cell size distributions in tissues. METHODS: MRI was used to acquire diffusion MRI signals with a range of diffusion times and gradient factors, and a model was fit to these data to derive estimates of cell size distributions. We implemented a 2-step fitting method to avoid noise-induced artificial peaks and provide reliable estimates of tumor cell size distributions. Computer simulations in silico, experimental measurements on cultured cells in vitro, and animal xenografts in vivo were used to validate the accuracy and precision of the method. Tumors in 7 patients with breast cancer were also imaged and analyzed using this MRI-cytometry approach on a clinical 3 Tesla MRI scanner. RESULTS: Simulations and experimental results confirm that MRI-cytometry can reliably map intravoxel, nonparametric cell size distributions and has the potential to discriminate smaller and larger cells. The application in breast cancer patients demonstrates the feasibility of direct translation of MRI-cytometry to clinical applications. CONCLUSION: The proposed MRI-cytometry method can characterize nonparametric cell size distributions in human tumors, which potentially provides a practical imaging approach to derive specific histopathological information on biological tissues.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen por Resonancia Magnética , Animales , Tamaño de la Célula , Simulación por Computador , Difusión , Humanos
9.
Magn Reson Imaging ; 74: 56-63, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32898649

RESUMEN

BACKGROUND: The multi-compartment diffusion MRI using the spherical mean technique (SMT) has been suggested to enhance the pathological specificity to tissue injury in multiple sclerosis (MS) imaging, but its accuracy and precision have not been comprehensively evaluated. METHODS: A Cramer-Rao Lower Bound method was used to optimize an SMT protocol for MS imaging. Finite difference computer simulations of spins in packed cylinders were then performed to evaluate the influences of five realistic pathological features in MS lesions: axon diameter, axon density, free water fraction, axonal crossing, dispersion, and undulation. RESULTS: SMT derived metrics can be biased by some confounds of pathological variations, such as axon size and free water fraction. However, SMT in general provides valuable information to characterize pathological features in MS lesions with a clinically feasible protocol. CONCLUSION: SMT may be used as a practical MS imaging method and should be further improved in clinical MS imaging.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Axones/patología , Humanos , Procesamiento de Imagen Asistido por Computador , Esclerosis Múltiple/patología
10.
Magn Reson Med ; 83(6): 2002-2014, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31765494

RESUMEN

PURPOSE: Cell size is a fundamental characteristic of all tissues, and changes in cell size in cancer reflect tumor status and response to treatments, such as apoptosis and cell-cycle arrest. Unfortunately, cell size can currently be obtained only by pathological evaluation of tumor tissue samples obtained invasively. Previous imaging approaches are limited to preclinical MRI scanners or require relatively long acquisition times that are impractical for clinical imaging. There is a need to develop cell-size imaging for clinical applications. METHODS: We propose a clinically feasible IMPULSED (imaging microstructural parameters using limited spectrally edited diffusion) approach that can characterize mean cell sizes in solid tumors. We report the use of a combination of pulse sequences, using different gradient waveforms implemented on clinical MRI scanners and analytical equations based on these waveforms to analyze diffusion-weighted MRI signals and derive specific microstructural parameters such as cell size. We also describe comprehensive validations of this approach using computer simulations, cell experiments in vitro, and animal experiments in vivo and demonstrate applications in preoperative breast cancer patients. RESULTS: With fast acquisitions (~7 minutes), IMPULSED can provide high-resolution (1.3 mm in-plane) mapping of mean cell size of human tumors in vivo on clinical 3T MRI scanners. All validations suggest that IMPULSED provides accurate and reliable measurements of mean cell size. CONCLUSION: The proposed IMPULSED method can assess cell-size variations in tumors of breast cancer patients, which may have the potential to assess early response to neoadjuvant therapy.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Animales , Neoplasias de la Mama/diagnóstico por imagen , Tamaño de la Célula , Imagen de Difusión por Resonancia Magnética , Humanos , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA