Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Biol Macromol ; 261(Pt 2): 129689, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272428

RESUMEN

Piperazine functionalized Schiff bases 4(a-c) were synthesized by a condensation reaction which were thoroughly characterized by using various spectroscopic techniques like 1H NMR, 13C NMR, IR and mass spectrometry. X-ray crystallography was used to analyse synthesized compound 4b. The sensing capability of 4b was investigated towards the tetravalent form of the zirconium ion among other metal ions. The limit of detection and the association constant, were calculated to be 56.4 × 10-8 M and 5.36 × 105 M-1 respectively. The inclusion of additional metal ions had no effect on the selectivity of sensor 4b. The binding mechanism was clarified using 1HNMR spectroscopy, which was further verified computationally, using DFT. Also, the seed germination experiments were performed and effect of compound 4b was analyzed on the seedlings of Zea Mays. An investigation into molecular docking study using (5HQX) protein revealed that it had inhibitory effects on cytokinin oxidase. The protein and ligand effectively associate, as indicated by the lower binding energy of -9.69 kcal/mol. Therefore, compound 4b can act as a good, powerful inhibitor against cytokinin oxidase.


Asunto(s)
Antioxidantes , Zea mays , Piperazina , Simulación del Acoplamiento Molecular , Antioxidantes/farmacología , Cobre/química , Bases de Schiff/química , Iones
2.
RSC Adv ; 13(46): 32399-32412, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37928840

RESUMEN

Herein, a 1,2,3-triazole derivative (CBT), synthesized using the Copper(i) catalyzed Alkyne Azide Cycloaddition (CuAAC) procedure, based on a chalcone skeleton has been reported, that was implemented as an effective sensor for Pb(ii) and Cu(ii) ions. The synthesized CBT was characterized using spectroscopic techniques such as FTIR, NMR (1H and 13C), and mass spectrometry. The sensing behaviour of CBT was analyzed using UV-Vis spectroscopy, demonstrating selective sensing for Pb(ii) and Cu(ii) ions, competitively. The correlation plot revealed the detection limit for Pb(ii) and Cu(ii) ions to be 100 µM and 110 µM respectively. In addition, DFT simulations and molecular electrostatic potential (MEP) studies scrutinized the binding strategy of the free CBT and its orientation towards the metal ions in the metal-ligand complex. The probe CBT was predicted via the online platform Way2drug for its pharmacological properties, investigating the possibility to inhibit early atherosclerosis. CBT was subsequently docked to the TRIB1 protein using AutoDock Vina and demonstrated a high binding affinity with a value of -6.2 kcal mol-1.

3.
Biophys J ; 122(17): 3439-3446, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37496270

RESUMEN

Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.


Asunto(s)
Nanopartículas , Pinzas Ópticas , Poliestirenos , Rayos Láser
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123015, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37364410

RESUMEN

Metal ions have significant roles in diagnosis, industry, human health, and the environment. To design and develop new lucid molecular receptors for the selective detection of metal ions is important for environmental and medical applications. In the present work, two-armed indole appended Schiff bases conjoined with 1,2,3-Triazole bis-organosilane and bis-organosilatrane skelton sensors for naked eye colorimetric and fluorescent detection sensors for Al(III) are developed. The introduction of Al(III) in sensor 4 and 5 show red shift in UV-visible spectra, changes in fluorescence spectra and immediate color change from colorless to dark yellow. Furthermore, the pH and time response studies were explored for both sensors 4 & 5. The sensors 4 and 5 exhibited significantly low detection limit (LOD) in nano-molar range 1.41 × 10-9 M and 0.17 × 10-9 M respectively from emission titration. The LOD form absorption titration was found to be 0.6 × 10-7 M for sensor 4 and 0.22 × 10-7 M for sensor 5. In addition, the sensing model is developed as paper based sensor for its practical applicability. The theoretical calculations were performed on Gaussian 03 program by relaxing the structures using Density functional theory.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 299: 122854, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196553

RESUMEN

The development of a ligand for their selective and sensitive detection is required due to the widespread use of Cu2+ in many industrial processes and the potential threat to human health. Herein, we report a bis-triazole linked organosilane (5) derived from the Cu(I) catalyzed azide-alkyne cycloaddition reaction. The synthesized compound 5 was characterized by (1H and 13C) NMR spectroscopic and mass spectrometry techniques. The UV-Visible and Fluorescence experiments of the designed compound 5 were performed with various metal ions, revealing its high selectivity and sensitivity to Cu2+ ions in MeOH: H2O (8:2, v/v, pH = 7.0, PBS buffer) solution. The selective fluorescence quenching upon addition of Cu2+ to the compound 5 is due to Photo-induced electron transfer process (PET). The limit of detection of compound 5 to Cu2+ was calculated as 2.56 × 10-6 M and 4.36 × 10-7 M through UV-Visible and Fluorescence titration data, respectively. The possible mechanism of 1:1 binding of 5 with Cu2+ could be affirmed by the density functional theory (DFT). Further, it was found that compound 5 showed a reversible behavior towards Cu2+ ions by the accumulation of sodium salt of CH3COO- which can be used in the construction of molecular logic gate where Cu2+ and CH3COO- are considered as inputs and the absorbance at 260 nm as output. Moreover, the molecular docking studies provide useful information about compound 5's interaction with the tyrosinase enzyme (PDB ID- 2Y9X).


Asunto(s)
Colorantes Fluorescentes , Compuestos de Organosilicio , Humanos , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Monofenol Monooxigenasa , Simulación del Acoplamiento Molecular , Triazoles , Iones/análisis
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 295: 122618, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-36934599

RESUMEN

Metal ions have active roles in biochemical, industrial, and environmental processes. The design and development of new rapid sensing materials with advanced reasonable, compelling, and convenient, techniques are urgent. Here in this work, we design and develop sensor with the facile amalgamation of the pyrene-based organosilane (5) through a click silylation approach silicon composite for selective detection of Cu2+ ions. Physicochemical and keen methods are employed to perceive the resultant hybrid nanoparticles (H-NPs), and these nanocomposites similarly displayed a strong affection for Cu2+ ions. In addition, the identification restrictions while utilizing 5 and H-NP's towards Cu2+ found in this study are far lower than the WHO rules for drinking water. Further, organosilane (5) shows good antibacterial and antioxidant activity. The antibacterial effects of triazole-based organosilane (5), are evaluated with a molecular docking study with Escherichia coli (IJZQ) was conducted. The selected ligand was revealed to have a reasonable docking score with a binding energy of -8.40 kcal mol-1.


Asunto(s)
Agua Potable , Compuestos de Organosilicio , Cobre/análisis , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Antibacterianos/química , Compuestos de Organosilicio/farmacología , Iones
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122358, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36702083

RESUMEN

Chromium is essential for some biochemical processes, and excess is a big concern that shows adverse effects on human health and the environment. Therefore, it is urgent to design new sensors to detect chromium ions rapidly. The present study discusses the synthesis of piperazine conjoined 1,2,3-triazolyl-γ-propyltriethoxysilanes (4a-4b) and development of 4a as fluorescence turn-on sensor for the detection of Cr3+ ions. The mechanistic insights reveal to the restricted CN rotation and inhibited intramolecular charge transfer (ICT) process. In addition, Job's plot and Benesi-Hildebrand plot justify the 1:1 binding affinity with a binding constant of 9.96 × 105 M-1 for [ligand 4a + Cr3+] complex and the limit of detection for Cr3+ ions is observed as 6.06 × 10-8 M. The fluorescence spectral changes, 1H NMR spectra and DFT studies provide evidences for ligand 4a and Cr3+ ions interactions. Further, the reversibility of the ligand 4a from [ligand 4a + Cr3+] complex on the addition of EDTA can be used in the construction of molecular logic gate where Cr3+ and EDTA are considered as inputs and the fluorescence intensity at 398 nm as output. Further, compounds 4a-4b were then evaluated for their antibacterial activity against bacterial strains (Escherichia coliand Staphylococcus aureus), revealing a modest activity. The binding mode of ligand 4a to Staphylococcus aureus (PDB ID - 3U2K) and Escherichia coli (PDB ID - 5Z4O) was investigated using an in-silico molecular docking technique, which revealed that the triazole ring and silanyl group are involved in hydrogen bonding with proteins and may be the cause of the ligand's antibacterial activity. The ligand 4a demonstrated a high affinity for binding within the active sites of proteins with binding energies of -7.97 kcal/mol (3U2K) and -8.68 kcal/mol (5Z4O).


Asunto(s)
Cromo , Colorantes Fluorescentes , Humanos , Piperazina , Ligandos , Colorantes Fluorescentes/química , Simulación del Acoplamiento Molecular , Ácido Edético , Iones
8.
Sci Rep ; 13(1): 739, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639412

RESUMEN

Using wide-field and point detection modalities, we show how optical trapping dynamics under femtosecond pulsed excitation can be explored by complementing detection of two-photon fluorescence with backscatter. Radial trajectories of trapped particles are mapped from correlated/anti-correlated fluctuations in backscatter pattern whereas temporal evolution of two-photon fluorescence is used to mark the onset of trapping involving multiple particles. Simultaneous confocal detection of backscatter and two-photon fluorescence estimates axial trap stiffness, delineating short-time trapping dynamics. When a second particle is being trapped an oscillatory signal is observed which is due to interference of backscatter amplitudes, revealing inter-particle interactions within the trap. These findings are crucial steps forward to achieve controlled manipulation by harnessing optical nonlinearity under femtosecond pulsed excitation.


Asunto(s)
Rayos Láser , Luz , Pinzas Ópticas , Fotones , Microscopía de Fluorescencia por Excitación Multifotónica
9.
Sci Total Environ ; 858(Pt 2): 159594, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36280050

RESUMEN

The present study aims to produce nanocomposites of silica based organosilane as sensitive and selective fluorescent sensor for the recognition of 2,4 dichlorophenoxyacetic acid (2,4-D). Hydrazone tethered triazole functionalized organosilane has been synthesized by the condensation reaction of 4-hydroxybenzaldehyde and phenyl hydrazine followed by Cu(I) catalysed cycloaddition of azide with alkyne. The prepared compound has been further grafted over silica surface and the synthesized materials were characterized by FT-IR, NMR (1H and 13C), XRD, mass spectrometry and FE-SEM spectral analyses. The prepared organosilane and its HSNPs have been utilized as an effective emission probe for the selective detection of 2,4 D with good linear relationship in the range of 0-160 µM and 0-115 µM and LOD value of 46 nM and 13.5 nM respectively. In the presence of other active species, the sensor shows minimal interference while the comparison with the previously reported techniques suggests it to be more desirable for the sensitive and selective detection of 2,4 D. Further, the real sample application for detection of 2,4 D was analyzed in field water and the HSNPs based sensing system gave recovery percentage of above 98 %.


Asunto(s)
Herbicidas , Nanocompuestos , Compuestos de Organosilicio , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Herbicidas/análisis , Nanocompuestos/química , Ácido 2,4-Diclorofenoxiacético/análisis , Agua/química , Fenoxiacetatos
10.
Nanoscale Adv ; 4(14): 2979-2987, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36133514

RESUMEN

Using dipole approximation, a comparative study of trapping force/potential on different types of dielectric nanoparticles is presented. The trapping force for multilayered nanoparticles, i.e. core-shell-shell type nanoparticles, is found to be enhanced compared with both core-only type and core-shell type nanoparticles. It is shown that an appropriate choice of material and thickness of the middle layer results in tuning the polarizability, thereby playing a vital role in determining the trapping efficiency for core-shell-shell type nanoparticles. Further, the effect of optical nonlinearity under femtosecond pulsed excitation is investigated and it is elucidated that depending on the specific need (i.e. high force versus long confinement time), the nature of excitation (i.e. pulsed excitation or continuous-wave excitation) can be judiciously chosen. These findings are promised to open up new prospects for controlled nanoscale trapping and manipulation across different fields of nanoscience and nanotechnology.

11.
Sci Rep ; 12(1): 5373, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354867

RESUMEN

Recent theoretical and experimental studies have shed light on how laser trapping dynamics under femtosecond pulsed excitation are fine-tuned by optical and thermal nonlinearities. Here, we present experimental results of trapping of single and multiple polystyrene beads (of 1 µm diameter). We show how integration and synchronization of bright-field video microscopy with confocal detection of backscatter provide both spatial and temporal resolution required to capture intricate details of nonlinear trapping dynamics. Such spatiotemporal detection is promising to have far-reaching applications in exploring controlled laser trapping and manipulations harnessed by optical and thermal nonlinearities.

12.
Sci Rep ; 12(1): 482, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013461

RESUMEN

Jarman-Bell (1974) hypothesized that in the dry savanna of Africa, small-bodied herbivores tend to browse more on forage with high protein and low fibre content. This implies browsing on high nutritive forage by meso-herbivores, and grazing and mixed feeding on coarse forage by mega-herbivores. We tested this hypothesis in the riverine alluvial grasslands of the Kaziranga National Park (KNP), where seasonal flood and fire play an important role in shaping the vegetation structure. We analyzed the feeding habits and quality of major forage species consumed by three mega-herbivores, viz. greater one-horned rhino, Asian elephant, and Asiatic wild buffalo, and three meso-herbivores, viz. swamp deer, hog deer, and sambar. We found that both mega and meso-herbivores were grazers and mixed feeders. Overall, 25 forage plants constituted more than 70% of their diet. Among monocots, family Poaceae with Saccharum spp. (contributing > 9% of the diet), and, among dicots, family Rhamnaceae with Ziziphus jujuba (contributing > 4% of the diet) fulfilled the dietary needs. In the dry season, the concentration of crude protein, neutral detergent fibre, calcium, sodium, and phosphorous varied significantly between monocots and dicots, whereas only calcium and sodium concentrations varied significantly in the wet season. Dicots were found to be more nutritious throughout the year. Compared to the dry season, the monocots, viz. Alpinia nigra, Carex vesicaria, Cynodon dactylon, Echinochloa crus-galli, Hemarthria compressa, Imperata cylindrica, and Saccharum spp., with their significantly high crude protein, were more nutritious during the wet season. Possibly due to the availability of higher quality monocots in the wet season, both mega and meso-herbivores consume it in high proportion. We concluded that the Jarman-Bell principle does not apply to riverine alluvial grasslands as body size did not explain the interspecific dietary patterns of the mega and meso-herbivores. This can be attributed to seasonal floods, habitat and forage availability, predation risk, and management practices such as controlled burning of the grasslands. The ongoing succession and invasion processes, anthropogenic pressures, and lack of grassland conservation policy are expected to affect the availability of the principal forage and suitable habitat of large herbivores in the Brahmaputra floodplains, which necessitates wet grassland-based management interventions for the continued co-existence of large herbivores in such habitats.


Asunto(s)
Animales Salvajes/fisiología , Conducta Alimentaria , Herbivoria/fisiología , Animales , Ecosistema , Inundaciones , Pradera , India , Parques Recreativos , Plantas/química , Plantas/clasificación , Plantas/metabolismo , Estaciones del Año
13.
Horm Mol Biol Clin Investig ; 43(1): 105-112, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34881529

RESUMEN

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) is a novel molecular tool. In recent days, it has been highlighted a lot, as the Nobel prize was awarded for this sector in 2020, and also for its recent use in Covid-19 related diagnostics. Otherwise, it is an eminent gene-editing technique applied in diverse medical zones of therapeutics in genetic diseases, hematological diseases, infectious diseases, etc., research related to molecular biology, cancer, hereditary diseases, immune and inflammatory diseases, etc., diagnostics related to infectious diseases like viral hemorrhagic fevers, Covid-19, etc. In this review, its discovery, working mechanisms, challenges while handling the technique, recent advancements, applications, alternatives have been discussed. It is a cheaper, faster technique revolutionizing the medicinal field right now. However, their off-target effects and difficulties in delivery into the desired cells make CRISPR, not easily utilizable. We conclude that further robust research in this field may promise many interesting, useful results.


Asunto(s)
COVID-19 , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Terapia Genética/métodos , Humanos , Biología Molecular , SARS-CoV-2/genética
14.
Nanoscale Adv ; 3(11): 3288-3297, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36133651

RESUMEN

Crucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties. On the other hand, femtosecond pulsed excitation is shown to provide additional advantages in tuning of trap stiffness through harnessing optical and thermal nonlinearity. Here we demonstrate that (metal/dielectric hybrid) core/shell type and hollow-core type nanoparticles experience more force than conventional core-type nanoparticles under both continuous-wave and, in particular, ultrafast pulsed excitation. Thus, for the first time, we show how tuning both materials properties as well as the nature of excitation can impart unprecedented control over nanoscale optical trapping and manipulation leading to a wide range of applications.

15.
Indian J Clin Biochem ; 32(2): 235-238, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28428701

RESUMEN

Association of cholesteryl ester transfer protein (CETP) Gene -629C/A Polymorphism with angiographically proven atherosclerosis CETP gene has been linked to CAD risk via its role in HDL and LDL metabolism. There is no agreement of whether CETP is atherogenic or not. Furthermore, various genotypes of CETP gene have been associated with CETP levels and thus with atherosclerosis risk. Our aim was to study the association of CETP -629C/A gene polymorphism with CETP and HDL levels and their association if any with atherosclerosis. Study population consisted of angiographically documented 50 cases with coronary artery atherosclerosis and 50 controls negative for atherosclerosis of coronary artery. Serum lipid profile was measured on SYNCHRON CX-9 using standard kits. Serum CETP levels were measured by ELISA method. CETP -629C/A gene polymorphism was studied using PCR-RFLP method. There was no significant difference in lipid profile of the two groups. However, serum CETP level was significantly higher (46.44 ± 21.75 ng/ml) in cases than controls (37.10 ± 21.92 ng/ml) with p value =0.035. The frequency of -629A allele was higher (0.85) in cases than that of controls (0.81). Homozygosity of A allele was more in subjects with atherosclerosis of coronary artery. We conclude that CETP is atherogenic and could be used as atherogenic risk predictor in angiographically proven atherosclerosis. Also A allele of -629C/A polymorphism is more prevalent in cases; indicating its effect on expression of CETP gene.

16.
Opt Express ; 24(19): 21485-96, 2016 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-27661888

RESUMEN

The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA