Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Quant Spectrosc Radiat Transf ; 186: 118-138, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27840454

RESUMEN

Retrievals of atmospheric composition from near-infrared measurements require measurements of airmass to better than the desired precision of the composition. The oxygen bands are obvious choices to quantify airmass since the mixing ratio of oxygen is fixed over the full range of atmospheric conditions. The OCO-2 mission is currently retrieving carbon dioxide concentration using the oxygen A-band for airmass normalization. The 0.25% accuracy desired for the carbon dioxide concentration has pushed the required state-of-the-art for oxygen spectroscopy. To measure O2 A-band cross-sections with such accuracy through the full range of atmospheric pressure requires a sophisticated line-shape model (Rautian or Speed-Dependent Voigt) with line mixing (LM) and collision induced absorption (CIA). Models of each of these phenomena exist, however, this work presents an integrated self-consistent model developed to ensure the best accuracy. It is also important to consider multiple sources of spectroscopic data for such a study in order to improve the dynamic range of the model and to minimize effects of instrumentation and associated systematic errors. The techniques of Fourier Transform Spectroscopy (FTS) and Cavity Ring-Down Spectroscopy (CRDS) allow complimentary information for such an analysis. We utilize multispectrum fitting software to generate a comprehensive new database with improved accuracy based on these datasets. The extensive information will be made available as a multi-dimensional cross-section (ABSCO) table and the parameterization will be offered for inclusion in the HITRANonline database.

2.
J Mol Spectrosc ; 207(1): 54-59, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11336520

RESUMEN

Using 0.002 cm(-1) resolution Fourier transform absorption spectra of an (17)O enriched ozone sample, an extensive analysis of the v(1)+v(3) bands of the (16)O(17)O(16)O and (16)O(16)O(17)O isotopomers of ozone has been performed for the first time. The experimental rotational levels of the (101) vibrational states were satisfactorily reproduced using a Hamiltonian matrix that takes into account the observed rovibrational resonances. More precisely, for (16)O(17)O(16)O, as for the other C(2v)-type ozone isotopomers, it was necessary to account for the Coriolis type resonances linking the (101) rotational levels with the levels of the (200) and (002) vibrational states and the Darling-Dennison interaction coupling the levels of (200) with those of (002). For the C(s)-type isotopomer, namely (16)O(16)O(17)O, as for (16)O(16)O(18)O and (16)O(18)O(18)O, it proved necessary to also account for an additional DeltaK(a)&equals+/-2 resonance involving the rotational levels from (101) and (002) (J.-M. Flaud and R. Bacis, Spectrochimica Acta Part A 54, 3-16 (1998)). Using a Hamiltonian matrix which takes these resonances explicitly into account, precise vibrational energies and rotational and coupling constants were deduced, leading to the following band centers: v(0)(v(1)+v(3))=2078.3496 cm(-1) for (16)O(17)O(16)O and v(0)(v(1)+v(3))=2098.8631 cm(-1) for (16)O(16)O(17)O. Copyright 2001 Academic Press.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA