Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 11: 1416006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39323472

RESUMEN

The SARS-CoV-2 Omicron (B.1.1.529) variant emerged in early November 2021 and its rapid spread created fear worldwide. This was attributed to its increased infectivity and escaping immune mechanisms. The spike protein of Omicron has more mutations (>30) than any other previous variants and was declared as the variant of concern (VOC) by the WHO. The concern among the scientific community was huge about this variant, and a piece of updated information on circulating viral strains is important in order to better understand the epidemiology, virus pathogenicity, transmission, therapeutic interventions, and vaccine development. A total of 710 samples were processed for sequencing and identification up to a resolution of sub-lineage. The sequence analysis revealed Omicron variant with distribution as follows: B.1.1, B.1.1.529, BA.1, BA.2, BA.2.10, BA.2.10.1, BA.2.23, BA.2.37, BA.2.38, BA.2.43, BA.2.74, BA.2.75, BA.2.76, and BA.4 sub-lineages. There is a shift noted in circulating lineage from BA.1 to BA.2 to BA.4 over a period from January to September 2022. Multiple signature mutations were identified in S protein T376A, D405N, and R408S mutations, which were new and common to all BA.2 variants. Additionally, R346T was seen in emerging BA.2.74 and BA.2.76 variants. The emerging BA.4 retained the common T376A, D405N, and R408S mutations of BA.2 along with a new mutation F486V. The samples sequenced were from different districts of Madhya Pradesh and showed a predominance of BA.2 and its variants circulating in this region. The current study identified circulation of BA.1 and BA.1.1 variants during initial phase. The predominant Delta strain of the second wave has been replaced by the Omicron variant in this region over a period of time. This study successfully deciphers the dynamics of the emergence and replacement of various sub-lineages of SARS-CoV-2 in central India on real real-time basis.

2.
Virus Res ; 335: 199180, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37482135

RESUMEN

Among recently prevalent tick-borne infections in India, Kyasanur Forest Virus Disease (KFD) is an important public health concern. During last decade the emergence of cases apart from endemic zone raised concern about case positivity. Early diagnosis is therefore very important in disease management and primary containment. This study, aimed to develop a simplified viral RNA extraction in combination to dry down format of novel isothermal assay for (Reverse Transcription- Polymerase Spiral reaction) specific and rapid identification of Kyasanur Forest Disease Virus targeting viral envelope gene. The one step method was optimized by magnetic bead based viral RNA extraction followed by isothermal RT-PSR assay in heat bath at 63°C for 60 minutes. Further, visual results interpretation was done by color change of Hydroxy Naphthol Blue dye. The detection limit of the assay was found 10 RNA copies/rxn with comparable to silica column based viral RNA combined real time qPCR. No cross reactivity was observed with other closely related flaviviruses. The assay was evaluated with clinical samples has shown >99% concordance between two methods. This is the first report of sample extraction coupled isothermal detection of KFD in a simplified manner without a need of any hi-end equipment. The assay developed here has potential to use as an alternate for field-based detection in resource limited settings for KFD.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Enfermedad del Bosque de Kyasanur , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , ADN Polimerasa Dirigida por ARN , Enfermedad del Bosque de Kyasanur/diagnóstico , Enfermedad del Bosque de Kyasanur/epidemiología , ARN Viral/genética , India/epidemiología , Sensibilidad y Especificidad
3.
J Med Virol ; 95(7): e28911, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394805

RESUMEN

Mpox (previously known as Monkeypox) has recently re-emerged, primarily through human-to-human transmission in non-endemic countries including India. Virus isolation is still considered as the gold standard for diagnosis of viral infections. Here, the qPCR positive skin lesion sample from a patient was inoculated in Vero E6 cell monolayer. Characteristic cytopathic effect exhibiting typical cell rounding and detachment was observed at passage-02. The virus isolation was confirmed by qPCR. The replication kinetics of the isolate was determined that revealed maximum viral titre of log 6.3 PFU/mL at 72 h postinfection. Further, whole genome analysis through next generation sequencing revealed that the Mpox virus (MPXV) isolate is characterized by several unique SNPs and INDELs. Phylogenetically, it belonged to A.2 lineage of clade IIb, forming a close group with all other Indian MPXV along with few from USA, UK, Portugal, Thailand and Nigeria. This study reports the first successful isolation and phenotypic and genotypic characterization of MPXV from India.


Asunto(s)
Monkeypox virus , Humanos , Pueblo Asiatico , Efecto Citopatogénico Viral , Genotipo , India , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Monkeypox virus/patogenicidad , Personas del Sur de Asia , Mpox/diagnóstico , Mpox/genética , Mpox/fisiopatología , Mpox/virología
4.
PLoS One ; 18(5): e0284559, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37163557

RESUMEN

Kyasanur Forest Disease is a tick-borne flavivirus is endemic in the Southern India. The recent expansion and resurgence of sporadic outbreaks in southern parts of country is the most important concern. Although only formalin inactivated vaccine is available for treatment with limited efficacy the early detection and timely identification is a only way to prevent spread of cases. If the disease can be identified prior to infection in humans like in forest areas from ticks and vectors the disease spread supposed to be managed quickly. Here we have standardized a single tube ready to use dry-down probe free real time RT-PCR targeted against virus envelope gene for detection of KFDV infection. The assay was standardized in liquid format first, later it was converted into dry-down format with addition of stabilizers with a similar sensitivity and specificity (10RNA Copies/rxn). The sensitivity was comparable to the most widely used and accepted diagnostic platform i.e. TaqMan qRT-PCR. However as the reported assay here omit the need of probes makes it cost effective and dry-down reagents makes more stability to the developed assay in this study if compare to TaqMan qPCR. The assay was evaluated with KFD positive samples and healthy sample panel which revealed high concordance with TaqMan qRT-PCR. Stability was unaffected by temperature fluctuations during transportation even in cold chain free conditions, thus reduce the maintenance of strict cold storage. These findings demonstrated that the reported assay is convenient with 100% sensitivity and specificity to TaqMan qPCR. Thus this assay has the potential usefulness for diagnosis KFDV for routine surveillance in resource limited laboratory settings omitting the use costly and heat sensitive TaqMan qRT-PCR reagents without compromising the sensitivity and specificity of the diagnosis assay.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Enfermedad del Bosque de Kyasanur , Humanos , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Configuración de Recursos Limitados , Reacción en Cadena en Tiempo Real de la Polimerasa , India/epidemiología , Sensibilidad y Especificidad
5.
Acta Trop ; 235: 106623, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35940341

RESUMEN

Kyasanur forest virus disease (KFD) is a major public health concern in India. Its etiology KFD virus causes haemorrhagic fever with severe sequelae in humans. Due to continuous spatiotemporal expansion of KFD in last decade, the incidences of positive cases have been increasing in both humans and primates. Early diagnosis is of prime importance for disease management and epidemiological containment. In the present study, the highly immunogenic Envelope Domain III (EDIII) antigen was produced using prokaryotic expression system with an yield of 8 mg/L. The protein was purified using affinity chromatography and confirmed for its immuno-reactivity by western blot and UPLCMS/MS analysis. The recombinant EDIII was used as an antigen for the standardization of ELISA to detect anti KFD IgM antibodies in humans. The ROC curve was prepared to set the optimum cut-off OD for the assay. The comparative evaluation of the assay with a reference MAC ELISA revealed 86.96% concordance, 82.22% sensitivity and 91.48% specificity. Inter-rater agreement was performed with kappa index revealing significant agreement between the assays. This is the first study using safe recombinant protein antigen-based detection of anti KFDV antibodies in humans. This simple and scalable ELISA assay will be applicable for large scale screening of samples for combating the emerging threats of KFD in newer territories.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Enfermedad del Bosque de Kyasanur , Animales , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Humanos , Inmunoglobulina M , Enfermedad del Bosque de Kyasanur/diagnóstico , Enfermedad del Bosque de Kyasanur/epidemiología , Proteínas Recombinantes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA