Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Am J Emerg Med ; 35(6): 885-888, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28185747

RESUMEN

BACKGROUND: Pediatric appendicitis is a common, potentially serious condition. Determining perforation status is crucial to planning effective management. PURPOSE: Determine the efficacy of serum total bilirubin concentration [STBC] in distinguishing perforation status in children with appendicitis. METHODS: Retrospective review of 257 cases of appendicitis who received abdominal CT scan and measurement of STBC. RESULTS: There were 109 with perforation vs 148 without perforation. Although elevated STBC was significantly more common in those with [36%] vs without perforation [22%], the mean difference in elevated values between groups [0.1mg/dL] was clinically insignificant. Higher degrees of hyperbilirubinemia [>2mg/dL] were rarely encountered [5%]. Predictive values for elevated STBC in distinguishing perforation outcome were imprecise [sensitivity 38.5%, specificity 78.4%, PPV 56.8%, NPV 63.4%]. ROC curve analysis of multiple clinical and other laboratory factors for predicting perforation status was unenhanced by adding the STBC variable. Specific analysis of those with perforated appendicitis and percutaneously-drained intra-abdominal abscess which was culture-positive for Escherichia coli showed an identical rate of STBC elevation compared to all with perforation. CONCLUSIONS: The routine measurement of STBC does not accurately distinguish perforation status in children with appendicitis, nor discern infecting organism in those with perforation and intra-abdominal abscess.


Asunto(s)
Absceso Abdominal/sangre , Absceso Abdominal/diagnóstico , Apendicitis/sangre , Apendicitis/diagnóstico , Bilirrubina/sangre , Adolescente , Niño , Preescolar , Diagnóstico Diferencial , Femenino , Humanos , Hiperbilirrubinemia/epidemiología , Masculino , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos , Tomografía Computarizada por Rayos X , Estados Unidos
2.
PLoS Comput Biol ; 11(5): e1004189, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25978332

RESUMEN

Studying ion channel currents generated distally from the recording site is difficult because of artifacts caused by poor space clamp and membrane filtering. A computational model can quantify artifact parameters for correction by simulating the currents only if their exact anatomical location is known. We propose that the same artifacts that confound current recordings can help pinpoint the source of those currents by providing a signature of the neuron's morphology. This method can improve the recording quality of currents initiated at the spike initiation zone (SIZ) that are often distal to the soma in invertebrate neurons. Drosophila being a valuable tool for characterizing ion currents, we estimated the SIZ location and quantified artifacts in an identified motoneuron, aCC/MN1-Ib, by constructing a novel multicompartmental model. Initial simulation of the measured biophysical channel properties in an isopotential Hodgkin-Huxley type neuron model partially replicated firing characteristics. Adding a second distal compartment, which contained spike-generating Na+ and K+ currents, was sufficient to simulate aCC's in vivo activity signature. Matching this signature using a reconstructed morphology predicted that the SIZ is on aCC's primary axon, 70 µm after the most distal dendritic branching point. From SIZ to soma, we observed and quantified selective morphological filtering of fast activating currents. Non-inactivating K+ currents are filtered ∼3 times less and despite their large magnitude at the soma they could be as distal as Na+ currents. The peak of transient component (NaT) of the voltage-activated Na+ current is also filtered more than the magnitude of slower persistent component (NaP), which can contribute to seizures. The corrected NaP/NaT ratio explains the previously observed discrepancy when the same channel is expressed in different cells. In summary, we used an in vivo signature to estimate ion channel location and recording artifacts, which can be applied to other neurons.


Asunto(s)
Drosophila melanogaster/fisiología , Canales Iónicos/metabolismo , Modelos Neurológicos , Neuronas Motoras/fisiología , Potenciales de Acción , Animales , Fenómenos Biofísicos , Biología Computacional , Simulación por Computador , Drosophila melanogaster/citología , Fenómenos Electrofisiológicos , Neuronas Motoras/ultraestructura , Técnicas de Placa-Clamp
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA