Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
bioRxiv ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38746191

RESUMEN

The ubiquitin kinase-ligase pair PINK1-PRKN identifies and selectively marks damaged mitochondria for elimination via the autophagy-lysosome system (mitophagy). While this cytoprotective pathway has been extensively studied in vitro upon acute and complete depolarization of mitochondria, the significance of PINK1-PRKN mitophagy in vivo is less well established. Here we used a novel approach to study PINK1-PRKN signaling in different energetically demanding tissues of mice during normal aging. We demonstrate a generally increased expression of both genes and enhanced enzymatic activity with aging across tissue types. Collectively our data suggest a distinct regulation of PINK1-PRKN signaling under basal conditions with the most pronounced activation and flux of the pathway in mouse heart compared to brain or skeletal muscle. Our biochemical analyses complement existing mitophagy reporter readouts and provide an important baseline assessment in vivo, setting the stage for further investigations of the PINK1-PRKN pathway during stress and in relevant disease conditions.

2.
Front Immunol ; 15: 1374796, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38550582

RESUMEN

For many decades viral infections have been suspected as 'triggers' of autoimmune disease, but mechanisms for how this could occur have been difficult to establish. Recent studies have shown that viral infections that are commonly associated with viral myocarditis and other autoimmune diseases such as coxsackievirus B3 (CVB3) and SARS-CoV-2 target mitochondria and are released from cells in mitochondrial vesicles that are able to activate the innate immune response. Studies have shown that Toll-like receptor (TLR)4 and the inflammasome pathway are activated by mitochondrial components. Autoreactivity against cardiac myosin and heart-specific immune responses that occur after infection with viruses where the heart is not the primary site of infection (e.g., CVB3, SARS-CoV-2) may occur because the heart has the highest density of mitochondria in the body. Evidence exists for autoantibodies against mitochondrial antigens in patients with myocarditis and dilated cardiomyopathy. Defects in tolerance mechanisms like autoimmune regulator gene (AIRE) may further increase the likelihood of autoreactivity against mitochondrial antigens leading to autoimmune disease. The focus of this review is to summarize current literature regarding the role of viral infection in the production of extracellular vesicles containing mitochondria and virus and the development of myocarditis.


Asunto(s)
Enfermedades Autoinmunes , Infecciones por Coxsackievirus , Vesículas Extracelulares , Miocarditis , Humanos , Autoinmunidad , Enterovirus Humano B , Mitocondrias/metabolismo , Vesículas Extracelulares/metabolismo
3.
Card Electrophysiol Clin ; 16(1): 107-115, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280810

RESUMEN

Myocarditis is an inflammatory disease of the myocardium secondary to infectious and noninfectious insults. The most feared consequence of myocarditis is sudden cardiac death owing to electrical instability and arrhythmia. Typical presenting symptoms include chest pain, dyspnea, palpitations and/or heart failure. Diagnosis is usually made with history, electrocardiogram, biomarkers, echocardiogram, and cardiac MRI (CMR). Application of the Lake Louise criteria to CMR results can help identify cases of myocarditis. Treatment is usually supportive with medical therapy, and patients are recommended to abstain from exercise for 3 to 6 months. Exercise restrictions may be lifted after normalization on follow-up testing.


Asunto(s)
Miocarditis , Humanos , Miocarditis/diagnóstico , Miocarditis/terapia , Volver al Deporte , Miocardio , Imagen por Resonancia Magnética/métodos , Biomarcadores
4.
iScience ; 26(12): 108493, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38146431

RESUMEN

Myocarditis is typically caused by viral infections, but most cases are thought to be subclinical. Echocardiography is often used for initial assessment of myocarditis patients but is poor at detecting subtle changes in cardiac dysfunction. Cardiac strain, such as global longitudinal strain (GLS) and global circumferential strain (GCS), represents an increasingly used set of measurements which can detect these subtle changes. Using a murine model of coxsackievirus B3 myocarditis, we characterized functional changes in the heart using echocardiography during myocarditis and by sex. We found that 2D GLS, 4D mode, and 4D strains detected a significant reduction in ejection fraction and GLS during myocarditis compared to baseline and in males compared to females. Furthermore, worse GLS correlated to increased levels of CD45+, CD11b+, and CD3+ immune cells. Our findings closely resemble published reports of GLS in patients with myocarditis indicating the usefulness of this animal model for translational studies of myocarditis.

5.
Small ; 19(49): e2303317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612820

RESUMEN

Patients with viral myocarditis are at risk of sudden death and may progress to dilated cardiomyopathy (DCM). Currently, no disease-specific therapies exist to treat viral myocarditis. Here it is examined whether reconstituted, lyophilized extracellular vesicles (EVs) from platelets from healthy men and women reduce acute or chronic myocarditis in male mice. Human-platelet-derived EVs (PEV) do not cause toxicity, damage, or inflammation in naïve mice. PEV administered during the innate immune response significantly reduces myocarditis with fewer epidermal growth factor (EGF)-like module-containing mucin-like hormone receptor-like 1 (F4/80) macrophages, T cells (cluster of differentiation molecules 4 and 8, CD4 and CD8), and mast cells, and improved cardiac function. Innate immune mediators known to increase myocarditis are decreased by innate PEV treatment including Toll-like receptor (TLR)4 and complement. PEV also significantly reduces perivascular fibrosis and remodeling including interleukin 1 beta (IL-1ß), transforming growth factor-beta 1, matrix metalloproteinase, collagen genes, and mast cell degranulation. PEV given at days 7-9 after infection reduces myocarditis and improves cardiac function. MicroRNA (miR) sequencing reveals that PEV contains miRs that decrease viral replication, TLR4 signaling, and T-cell activation. These data show that EVs from the platelets of healthy individuals can significantly reduce myocarditis and improve cardiac function.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Humanos , Ratones , Masculino , Femenino , Animales , Miocardio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Inmunidad Innata , Macrófagos/metabolismo
6.
Circ Res ; 132(10): 1302-1319, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37167363

RESUMEN

Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Miocarditis , Pericarditis , Femenino , Humanos , Masculino , Vacunas contra la COVID-19/efectos adversos , Miocarditis/epidemiología , Miocarditis/etiología , Pericarditis/epidemiología , SARS-CoV-2
7.
Mol Aspects Med ; 91: 101155, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36456416

RESUMEN

Extracellular vesicles (EVs) are released from all cells in the body, forming an important intercellular communication network that contributes to health and disease. The contents of EVs are cell source-specific, inducing distinct signaling responses in recipient cells. The specificity of EVs and their accumulation in fluid spaces that are accessible for liquid biopsies make them highly attractive as potential biomarkers and therapies for disease. The duality of EVs as favorable (therapeutic) or unfavorable (pathological) messengers is context dependent and remains to be fully determined in homeostasis and various disease states. This review describes the use of EVs as biomarkers, drug delivery vehicles, and regenerative therapeutics, highlighting examples involving viral infections, cancer, and neurological diseases. There is growing interest to provide personalized therapy based on individual patient and disease characteristics. Increasing evidence suggests that EV biomarkers and therapeutic approaches are ideal for personalized medicine due to the diversity and multifunctionality of EVs.


Asunto(s)
Vesículas Extracelulares , Medicina de Precisión , Humanos , Sistemas de Liberación de Medicamentos , Biomarcadores , Biopsia Líquida
8.
Cardiol Clin ; 41(1): 107-115, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36368807

RESUMEN

Myocarditis is an inflammatory disease of the myocardium secondary to infectious and noninfectious insults. The most feared consequence of myocarditis is sudden cardiac death owing to electrical instability and arrhythmia. Typical presenting symptoms include chest pain, dyspnea, palpitations and/or heart failure. Diagnosis is usually made with history, electrocardiogram, biomarkers, echocardiogram, and cardiac MRI (CMR). Application of the Lake Louise criteria to CMR results can help identify cases of myocarditis. Treatment is usually supportive with medical therapy, and patients are recommended to abstain from exercise for 3 to 6 months. Exercise restrictions may be lifted after normalization on follow-up testing.


Asunto(s)
Miocarditis , Humanos , Miocarditis/diagnóstico , Miocarditis/etiología , Miocarditis/terapia , Volver al Deporte , Miocardio , Imagen por Resonancia Magnética/métodos , Electrocardiografía
9.
Mol Aspects Med ; 91: 101138, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36050142

RESUMEN

Regenerative medicine as a field has emerged as a new component of modern medicine and medical research that encompasses a wide range of products including cellular and acellular therapies. As this new field emerged, regulatory agencies like the Food and Drug Administration (FDA) rapidly adapted existing regulatory frameworks to address the transplantation, gene therapy, cell-based therapeutics, and acellular biologics that fall under the broader regenerative medicine umbrella. Where it has not been possible to modify existing regulation and processes, entirely new frameworks have been generated with the intention of providing flexible, forward-facing systems to regulate this rapidly growing field. This review discusses the current state of FDA regulatory affairs in the context of stem cells and extracellular vesicles by highlighting gaps in the current regulatory system and then discussing where regulatory science in regenerative medicine may be headed based on these gaps and the FDA's historical ability to deal with emerging fields. Lastly, we utilize case studies in stem cell and acellular based treatments to demonstrate how regulatory science has evolved in regenerative medicine and highlight the ongoing clinical efforts and challenges of these therapies.


Asunto(s)
Investigación Biomédica , Vesículas Extracelulares , Estados Unidos , Humanos , Medicina Regenerativa , United States Food and Drug Administration , Células Madre
10.
J Clin Med ; 11(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35743613

RESUMEN

As survival in breast cancer patients from newer therapies increases, concerns for chemotherapy-induced cardiotoxicity (CIC) have offset some of these benefits, manifesting as a decline in left ventricular ejection fraction (LVEF). Patients receiving anthracycline-based chemotherapy followed by trastuzumab are at risk for CIC. Previous research evaluating whether clinical biomarkers predict cardiotoxicity has been inconsistent. Recently, angiotensin II type 1 receptor (ATR1) and endothelin 1 (ET1) have been shown to play a role in breast tumor growth. We evaluated ATR1 and ET1 expression in breast cancer tissue and its association with CIC. A total of 33 paraffin-embedded breast tissue specimens from women with breast cancer treated with anthracycline-based chemotherapy and trastuzumab were analyzed by immunohistochemistry (IHC) and qRT-PCR. We found that ET1 expression was increased in patients with an LVEF ≤ 50% (p = 0.032) with a lower LVEF correlating with higher ET1 expression (r = 0.377, p = 0.031). In patients with a change in LVEF of greater than 10%, greater ET1 expression was noted compared to those without a change in LVEF (p = 0.017). Increased ET1 expression in breast tumor tissue is associated with reduced LVEF. Future studies need to examine whether ET1 may be a tissue biomarker that helps predict the risk of developing CIC in women with breast cancer.

11.
Front Cardiovasc Med ; 9: 1073814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36741845

RESUMEN

Aims: The goal of this study was to determine whether sex and age differences exist for soluble ST2 (sST2) for several cardiovascular diseases (CVDs). Methods: We examined sST2 levels using an ELISA kit for myocarditis (n = 303), cardiomyopathy (n = 293), coronary artery disease (CAD) (n = 239), myocardial infarct (MI) (n = 159), and congestive heart failure (CHF) (n = 286) and compared them to controls that did not have CVDs (n = 234). Results: Myocarditis occurred in this study in relatively young patients around age 40 while the other CVDs occurred more often in older individuals around age 60. We observed a sex difference in sST2 by age only in myocarditis patients (men aged 38, women 46, p = 0.0002), but not for other CVDs. Sera sST2 levels were significantly elevated compared to age-matched controls for all CVDs: myocarditis (p ≤ 0.0001), cardiomyopathy (p = 0.0009), CAD (p = 0.03), MI (p = 0.034), and CHF (p < 0.0001) driven by elevated sST2 levels in females for all CVDs except myocarditis, which was elevated in both females (p = 0.002) and males (p ≤ 0.0001). Sex differences in sST2 levels were found for myocarditis and cardiomyopathy but no other CVDs and were higher in males (myocarditis p = 0.0035; cardiomyopathy p = 0.0047). sST2 levels were higher in women with myocarditis over 50 years of age compared to men (p = 0.0004) or women under 50 years of age (p = 0.015). In cardiomyopathy and MI patients, men over 50 had significantly higher levels of sST2 than women (p = 0.012 and p = 0.043, respectively) but sex and age differences were not detected in other CVDs. However, women with cardiomyopathy that experienced early menopause had higher sST2 levels than those who underwent menopause at a natural age range (p = 0.02). Conclusion: We found that sex and age differences in sera sST2 exist for myocarditis, cardiomyopathy, and MI, but were not observed in other CVDs including CAD and CHF. These initial findings in patients with self-reported CVDs indicate that more research is needed into sex and age differences in sST2 levels in individual CVDs.

12.
Int J Mol Sci ; 22(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34445539

RESUMEN

BACKGROUND: Myocarditis is an inflammatory heart disease caused by viral infections that can lead to heart failure, and occurs more often in men than women. Since animal studies have shown that myocarditis is influenced by sex hormones, we hypothesized that endocrine disruptors, which interfere with natural hormones, may play a role in the progression of the disease. The human population is exposed to the endocrine disruptor bisphenol A (BPA) from plastics, such as water bottles and plastic food containers. METHODS: Male and female adult BALB/c mice were housed in plastic versus glass caging, or exposed to BPA in drinking water versus control water. Myocarditis was induced with coxsackievirus B3 on day 0, and the endpoints were assessed on day 10 post infection. RESULTS: We found that male BALB/c mice that were exposed to plastic caging had increased myocarditis due to complement activation and elevated numbers of macrophages and neutrophils, whereas females had elevated mast cell activation and fibrosis. CONCLUSIONS: These findings show that housing mice in traditional plastic caging increases viral myocarditis in males and females, but using sex-specific immune mechanisms.


Asunto(s)
Infecciones por Coxsackievirus/complicaciones , Enterovirus Humano B/patogenicidad , Vivienda para Animales/estadística & datos numéricos , Miocarditis/patología , Plásticos/efectos adversos , Animales , Infecciones por Coxsackievirus/virología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Miocarditis/etiología , Miocarditis/virología , Factores Sexuales
13.
Front Cardiovasc Med ; 8: 757784, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096991

RESUMEN

Background: Doxorubicin is a widely used and effective chemotherapy, but the major limiting side effect is cardiomyopathy which in some patients leads to congestive heart failure. Genetic variants in TRPC6 have been associated with the development of doxorubicin-induced cardiotoxicity, suggesting that TRPC6 may be a therapeutic target for cardioprotection in cancer patients. Methods: Assessment of Trpc6 deficiency to prevent doxorubicin-induced cardiac damage and function was conducted in male and female B6.129 and Trpc6 knock-out mice. Mice were treated with doxorubicin intraperitoneally every other day for a total of 6 injections (4 mg/kg/dose, cumulative dose 24 mg/kg). Cardiac damage was measured in heart sections by quantification of vacuolation and fibrosis, and in heart tissue by gene expression of Tnni3 and Myh7. Cardiac function was determined by echocardiography. Results: When treated with doxorubicin, male Trpc6-deficient mice showed improvement in markers of cardiac damage with significantly reduced vacuolation, fibrosis and Myh7 expression and increased Tnni3 expression in the heart compared to wild-type controls. Similarly, male Trpc6-deficient mice treated with doxorubicin had improved LVEF, fractional shortening, cardiac output and stroke volume. Female mice were less susceptible to doxorubicin-induced cardiac damage and functional changes than males, but Trpc6-deficient females had improved vacuolation with doxorubicin treatment. Sex differences were observed in wild-type and Trpc6-deficient mice in body-weight and expression of Trpc1, Trpc3 and Rcan1 in response to doxorubicin. Conclusions: Trpc6 promotes cardiac damage following treatment with doxorubicin resulting in cardiomyopathy in male mice. Female mice are less susceptible to cardiotoxicity with more robust ability to modulate other Trpc channels and Rcan1 expression.

14.
Front Cardiovasc Med ; 7: 142, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32903434

RESUMEN

Background: Our previous GWAS identified genetic variants at six novel loci that were associated with a decline in left ventricular ejection fraction (LVEF), p < 1 × 10-5 in 1,191 early breast cancer patients from the N9831 clinical trial of chemotherapy plus trastuzumab. In this study we sought replication of these loci. Methods: We tested the top loci from the GWAS for association with chemotherapy-related heart failure (CRHF) using 26 CRHF cases from N9831 and 984 patients from the Mayo Clinic Biobank which included CRHF cases (N = 12) and control groups of patients treated with anthracycline +/- trastuzumab without HF (N = 282) and patients with HF that were never treated with anthracycline or trastuzumab (N = 690). We further examined associated loci in the context of gene expression and rare coding variants using a TWAS approach in heart left ventricle and Sanger sequencing, respectively. Doxorubicin-induced apoptosis and cardiomyopathy was modeled in human iPSC-derived cardiomyocytes and endothelial cells and a mouse model, respectively, that were pre-treated with GsMTx-4, an inhibitor of TRPC6. Results: TRPC6 5' flanking variant rs57242572-T was significantly more frequent in cases compared to controls, p = 0.031, and rs61918162-T showed a trend for association, p = 0.065. The rs61918162 T-allele was associated with higher TRPC6 expression in the heart left ventricle. We identified a single TRPC6 rare missense variant (rs767086724, N338S, prevalence 0.0025% in GnomAD) in one of 38 patients (2.6%) with CRHF. Pre-treatment of cardiomyocytes and endothelial cells with GsMTx4 significantly reduced doxorubicin-induced apoptosis. Similarly, mice treated with GsMTx4 had significantly improved doxorubicin-induced cardiac dysfunction. Conclusions: Genetic variants that are associated with increased TRPC6 expression in the heart and rare TRPC6 missense variants may be clinically useful as risk factors for CRHF. GsMTx-4 may be a cardioprotective agent in patients with TRPC6 risk variants. Replication of the genetic associations in larger well-characterized samples and functional studies are required.

15.
Redox Biol ; 31: 101482, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32197947

RESUMEN

Autoimmune diseases are characterized by circulating antibodies and immune complexes directed against self-tissues that result in both systemic and organ-specific inflammation and pathology. Most autoimmune diseases occur more often in women than men. One exception is myocarditis, which is an inflammation of the myocardium that is typically caused by viral infections. Sex differences in the immune response and the role of the sex hormones estrogen and testosterone are well established based on animal models of autoimmune viral myocarditis as well as in mitochondrial function leading to reactive oxygen species production. RNA viruses like coxsackievirus B3, the primary cause of myocarditis in the US, activate the inflammasome through mitochondrial antiviral signaling protein located on the mitochondrial outer membrane. Toll-like receptor 4 and the inflammasome are the primary signaling pathways that increase inflammation during myocarditis, which is increased by testosterone. This review describes what is known about sex differences in inflammation, redox biology and mitochondrial function in the male-dominant autoimmune disease myocarditis and highlights gaps in the literature and future directions.


Asunto(s)
Enfermedades Autoinmunes , Caracteres Sexuales , Animales , Enfermedades Autoinmunes/metabolismo , Autoinmunidad , Biología , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamación/metabolismo , Masculino , Mitocondrias , Miocardio/metabolismo , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA