Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS One ; 19(1): e0293644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165955

RESUMEN

Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Animales , Ratones , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Citoplasma/metabolismo
2.
Curr Issues Mol Biol ; 44(10): 5106-5116, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286061

RESUMEN

Given the increasing interest in bioactive dietary components that can modulate gene expression enhancing human health, three metabolites isolated from hemp seeds-cannabidiolic acid, N-trans-caffeoyltyramine, and cannabisin B-were examined for their ability to change the expression levels of microRNAs in human neural cells. To this end, cultured SH-SY5Y cells were treated with the three compounds and their microRNA content was characterized by next-generation small RNA sequencing. As a result, 31 microRNAs underwent major expression changes, being at least doubled or halved by the treatments. A computational analysis of the biological pathways affected by these microRNAs then showed that some are implicated in neural functions, such as axon guidance, hippocampal signaling, and neurotrophin signaling. Of these, miR-708-5p, miR-181a-5p, miR-190a-5p, miR-199a-5p, and miR-143-3p are known to be involved in Alzheimer's disease and their expression changes are expected to ameliorate neural function. Overall, these results provide new insights into the mechanism of action of hemp seed metabolites and encourage further studies to gain a better understanding of their biological effects on the central nervous system.

3.
Int J Biol Sci ; 18(13): 5136-5153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982890

RESUMEN

CircRNA cargo in spermatozoa (SPZ) participates in setting cell quality, in terms of morphology and motility. Cannabinoid receptor CB1 activity is correlated with a proper spermatogenesis and epididymal sperm maturation. Despite CB1 promotes endogenous skill to circularize mRNAs in SPZ, few notions are reported regarding the functional link between endocannabinoids and spermatic circRNA cargo. In CB1 knock-out male mice, we performed a complete dataset of spermatic circRNA content by microarray strategy. Differentially expressed (DE)-circRNAs, as a function of genotype, were identified. Within DE-circRNAs, we focused the attention on circLIMA1, as putative actin-cytoskeleton architecture regulator. The validation of circLIMA1 dependent-competitive endogenous RNA (ceRNA) network (ceRNET) in in vitro cell line confirmed its activity in the regulation of the cytoskeletal actin. Interestingly, a dynamic actin regulation in SPZ nuclei was found during their epididymal maturation. In this scenario, we showed for the first time an intriguing sperm nuclear actin remodeling, regulated via a ceRNET-independent pathway, consisting in the nuclear shuttling of circLIMA1-QKI interactome and downstream in Gelsolin regulation. In particular, the increased levels of circLIMA1 in CB1 knock-out SPZ, associated with an inefficient depolymerization of nuclear actin, specifically illustrate how endocannabinoids, by regulating circRNA cargo, may contribute to sperm morpho-cellular maturation.


Asunto(s)
Actinas , ARN Circular , Actinas/genética , Actinas/metabolismo , Animales , Endocannabinoides/metabolismo , Masculino , Ratones , Semen/metabolismo , Espermatozoides/metabolismo
4.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054794

RESUMEN

Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated "competing endogenous RNA (ceRNA) networks" ("ceRNET"): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning "new" functions to "old" molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.


Asunto(s)
Compensación de Dosificación (Genética) , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X/genética , Aneuploidia , Animales , Femenino , Humanos , Masculino , Modelos Biológicos , ARN Largo no Codificante/genética , Síndrome
5.
Front Genet ; 12: 678994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163530

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel RNA virus affecting humans, causing a form of acute pulmonary respiratory disorder named COVID-19, declared a pandemic by the World Health Organization. MicroRNAs (miRNA) play an emerging and important role in the interplay between viruses and host cells. Although the impact of host miRNAs on SARS-CoV-2 infection has been predicted, experimental data are still missing. This study started by a bioinformatics prediction of cellular miRNAs potentially targeting viral RNAs; then, a number of criteria also based on experimental evidence and virus biology were applied, giving rise to eight promising binding miRNAs. Their interaction with viral sequences was experimentally validated by transfecting luciferase-based reporter plasmids carrying viral target sequences or their inverted sequences into the lung A549 cell line. Transfection of the reporter plasmids resulted in a reduction of luciferase activity for five out of the eight potential binding sites, suggesting responsiveness to endogenously expressed miRNAs. Co-transfection of the reporter plasmids along with miRNA mimics led to a further and strong reduction of luciferase activity, validating the interaction between miR-219a-2-3p, miR-30c-5p, miR-378d, miR-29a-3p, miR-15b-5p, and viral sequences. miR-15b was also able to repress plasmid-driven Spike expression. Intriguingly, the viral target sequences are fully conserved in more recent variants such as United Kingdom variant B.1.1.7 and South Africa 501Y.V2. Overall, this study provides a first experimental evidence of the interaction between specific cellular miRNAs and SARS-CoV-2 sequences, thus contributing to understanding the molecular mechanisms underlying virus infection and pathogenesis to envisage innovative therapeutic interventions and diagnostic tools.

6.
Cell Biol Int ; 45(8): 1797-1803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33818827

RESUMEN

Colorectal cancer (CRC) is the second leading cause of death of malignant tumors worldwide. Recent studies point to a role for the adiponectin-receptor axis in colorectal carcinogenesis, and in particular to the oncosuppressive properties of the T-cadherin receptor. In addition, the loss of T-cadherin expression in tumor tissues has been linked to cancer progression and attributed to aberrant methylation of its promoter. Recognizing the pivotal role of microRNAs in CRC, this study explores their possible contribution to the downregulation of T-cadherin. A systematic bioinformatics analysis, restricted by microRNA expression data in the colon or in cultured colorectal cell lines, predicted twelve top-ranking target miRNA sites within the 3' UTR of T-cadherin. Experimental validation analyses based on luciferase reporter constructs and miRNA mimic or miRNA inhibitor transfections toward colorectal adenocarcinoma cell lines indicated that miR-377-3p was able to directly bind to the T-cadherin sequence, and thus downregulating its expression. Given the oncogenic activity of miR-377 and the oncosuppressive activity of T-cadherin in CRC, the regulatory circuit highlighted in this study may add new insights into molecular mechanisms driving colorectal carcinogenesis, and perspectively it could be exploited to identify novel biomarkers and therapeutic targets.


Asunto(s)
Cadherinas/metabolismo , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo/fisiología , Genes Supresores de Tumor/fisiología , MicroARNs/metabolismo , Células CACO-2 , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Neoplasias Colorrectales/genética , Células HT29 , Humanos , MicroARNs/genética
8.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709089

RESUMEN

MicroRNAs (miRNA), and more recently long non-coding RNAs (lncRNA), are emerging as a driving force for hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death. In this work, we investigated a possible RNA regulatory network involving two oncosuppressive miRNAs, miR-125a and let-7e, and a long non-coding antisense RNA, SPACA6P-AS (SP-AS), all transcribed from the same locus, with SP-AS in the opposite direction and thus carrying complementary sequences to the miRNAs. In vitro experiments validated the binding of the miRNAs to SP-AS. Then, the boosting of either the miRNAs or SP-AS levels demonstrated their reciprocal inhibition. In addition, overexpression of SP-AS resulted in a reduced silencing activity of miR-125a and let-7e toward their key oncogenic targets, i.e., Lin28b, MMP11, SIRT7, Zbtb7a, Cyclin D1, CDC25B, HMGA2, that resulted significantly upregulated. Finally, the analysis of 374 HCC samples in comparison to 50 normal liver tissues showed an upregulation of SP-AS and a reverse expression of miR-125a, not observed for let-7e; consistently, miR-125a oncogenic targets were upregulated. Overall, the data depict a novel competing endogenous RNA (ceRNA) network, ceRNET, whereby miR-125a can regulate the expression of SP-AS, which in turn regulates the miRNA by competing with the binding to the mRNA targets. We speculate that the unbalancing of any network component may contribute to hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos
9.
Cell Mol Life Sci ; 77(20): 4069-4080, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32356180

RESUMEN

MicroRNAs (miRNA) are small-non coding RNAs endowed with great regulatory power, thus playing key roles not only in almost all physiological pathways, but also in the pathogenesis of several diseases. Surprisingly, genomic distribution analysis revealed the highest density of miRNA sequences on the X chromosome; this evolutionary conserved mammalian feature equips females with a larger miRNA machinery than males. However, miRNAs contribution to some X-related conditions, properties or functions is still poorly explored. With the aim to support and focus research in the field, this review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer. A fine map of miRNA sequences on the X chromosome is reported, and their known functions are discussed; in addition, bioinformatics functional analyses of the whole X-linked miRNA targetome (predicted and validated) were performed. The emerging scenario points to different gaps in the knowledge that should be filled with future experimental investigations, also in terms of possible implications and pathological perspectives for X chromosome aneuploidy syndromes, such as Turner and Klinefelter syndromes.


Asunto(s)
Cromosomas Humanos X/genética , MicroARNs/genética , Animales , Biología Computacional/métodos , Humanos , Síndrome de Klinefelter/genética , Neoplasias/genética , Síndrome de Turner/genética
10.
Mol Biol Rep ; 47(6): 4875-4878, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32410140

RESUMEN

Zbtb7a is a transcription factor whose dysfunction is correlated to the development of several types of cancer, including hepatocellular carcinoma (HCC). It generally acts as a repressor of transcription downregulating the expression of several target genes including oncosuppressors ARF and Rb. In this study, Zbtb7a was found to suppress the expression of miR-125a, an oncosuppressive miRNA that is often downregulated in HCC. This effect is mediated by the binding of the transcription factor to a regulatory sequence in the promoter of the transcription unit of miR-125a located 14 bp upstream of the transcription start site. Consistent with this observation, the analysis of 370 HCC samples showed an upregulation of Zbtb7a compared to 50 normal liver tissues and a reverse correlation with miR-125a expression. These data suggest that miR-125a may support the oncogenic potential of Zbtb7a.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , Proto-Oncogenes Mas , Proto-Oncogenes/genética , Factores de Transcripción/metabolismo
11.
Biochem Biophys Res Commun ; 500(3): 824-827, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29689270

RESUMEN

MicroRNA-125a exhibits an antiproliferative activity and is downregulated in several types of tumors, including hepatocellular carcinoma where it targets sirtuin-7, matrix metalloproteinase-11, and c-Raf. Another target of miR-125a is Lin28, a pluripotency factor that is generally undetectable in differentiated cells but is often upregulated/reactivated in tumors where it acts as an oncogenic factor promoting cell proliferation and tumor progression. In this study we show that downregulation of Lin28b by miR-125a partially accounts for its antiproliferative activity toward hepatocellular carcinoma cells. We also found that Lin28b is able to bind a conserved GGAG motif of pre-miR-125a and to inhibit its maturation in hepatocellular carcinoma cells. Reciprocal inhibition between miR-125a and Lin28b reasonably generates a positive feedback loop where reactivation of Lin-28b inhibits the expression of both miR-125a and let-7, reinforcing its own expression and leading to a marked overexpression of the mitogenic targets of the two miRNAs. On the other hand, perturbation of these circuits by overexpression of miR-125a suppresses Lin28b leading to a decreased cell proliferation. Overall, these data support a tumor suppressive role for miR-125a and contribute to the elucidation of its molecular targets.


Asunto(s)
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Sitios de Unión , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , MicroARNs/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA