Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
1.
Nat Immunol ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227514

RESUMEN

A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.

2.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149384

RESUMEN

The continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has compromised neutralizing antibody responses elicited by prior infection or vaccination and abolished the utility of most monoclonal antibody therapeutics. We previously described a computationally-designed, homotrimeric miniprotein inhibitor, designated TRI2-2, that protects mice against pre-Omicron SARS-CoV-2 variants. Here, we show that TRI2-2 exhibits pan neutralization of variants that evolved during the 4.5 years since the emergence of SARS-CoV-2 and protects mice against BQ.1.1, XBB.1.5 and BA.2.86 challenge when administered post-exposure by an intranasal route. The resistance of TRI2-2 to viral escape and its direct delivery to the upper airways rationalize a path toward clinical advancement.

3.
J Clin Invest ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207863

RESUMEN

Intestinal dysmotility syndromes have been epidemiologically associated with several antecedent bacterial and viral infections. To model this phenotype, we previously infected mice with the neurotropic flavivirus, West Nile Virus (WNV) and demonstrated intestinal transit defects. Here, we find that within one week of WNV infection, enteric neurons and glia become damaged, resulting in sustained reductions of neuronal cells and their networks of connecting fibers. Using cell-depleting antibodies, adoptive transfer experiments, and mice lacking specific immune cells or immune functions, we show that infiltrating WNV-specific CD4+ and CD8+ T cells damage the enteric nervous system (ENS) and glia, which leads to intestinal dysmotility; these T cells use multiple and redundant effector functions including perforin and Fas ligand. In comparison, WNV-triggered ENS injury and intestinal dysmotility appears to not require infiltrating monocytes and damage may be limited by resident muscularis macrophages. Overall, our experiments support a model whereby antigen specific T cell subsets and their effector molecules responding to WNV infection direct immune pathology against enteric neurons and supporting glia that results in intestinal dysmotility.

4.
Immunol Rev ; 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162394

RESUMEN

Antibodies generated after vaccination or natural pathogen exposure are essential mediators of protection against many infections. Most studies with viruses have focused on antibody neutralization, in which protection is conferred by the fragment antigen binding region (Fab) through targeting of different steps in the viral lifecycle including attachment, internalization, fusion, and egress. Beyond neutralization, the fragment crystallizable (Fc) region of antibodies can integrate innate and adaptive immune responses by engaging complement components and distinct Fc gamma receptors (FcγR) on different host immune cells. In this review, we discuss recent advances in our understanding of antibody neutralization and Fc effector functions, and the assays used to measure them. Additionally, we describe the contexts in which these mechanisms are associated with protection against viruses and highlight how Fc-FcγR interactions can improve the potency of antibody-based therapies.

5.
Sci Transl Med ; 16(761): eado1941, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167662

RESUMEN

Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19 , Interleucina-10 , Nematospiroides dubius , SARS-CoV-2 , Animales , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Ratones , Nematospiroides dubius/inmunología , Vacunas contra la COVID-19/inmunología , Interleucina-10/metabolismo , Linfocitos T CD8-positivos/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Ratones Endogámicos C57BL , Femenino , Linfocitos T/inmunología , Infecciones por Strongylida/inmunología , Factor de Transcripción STAT6/metabolismo
6.
J Virol ; 98(9): e0057424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194250

RESUMEN

Boosting with mRNA vaccines encoding variant-matched spike proteins has been implemented to mitigate their reduced efficacy against emerging SARS-CoV-2 variants. Nonetheless, in humans, it remains unclear whether boosting in the ipsilateral or contralateral arm with respect to the priming doses impacts immunity and protection. Here, we boosted K18-hACE2 mice with either monovalent mRNA-1273 (Wuhan-1 spike) or bivalent mRNA-1273.214 (Wuhan-1 + BA.1 spike) vaccine in the ipsilateral or contralateral leg after a two-dose priming series with mRNA-1273. Boosting in the ipsilateral or contralateral leg elicited equivalent levels of serum IgG and neutralizing antibody responses against Wuhan-1 and BA.1. While contralateral boosting with mRNA vaccines resulted in the expansion of spike-specific B and T cells beyond the ipsilateral draining lymph node (DLN) to the contralateral DLN, administration of a third mRNA vaccine dose at either site resulted in similar levels of antigen-specific germinal center B cells, plasmablasts/plasma cells, T follicular helper cells, and CD8+ T cells in the DLNs and the spleen. Furthermore, ipsilateral and contralateral boosting with mRNA-1273 or mRNA-1273.214 vaccines conferred similar homologous or heterologous immune protection against SARS-CoV-2 BA.1 virus challenge with equivalent reductions in viral RNA and infectious virus in the nasal turbinates and lungs. Collectively, our data show limited differences in B and T cell immune responses after ipsilateral and contralateral site boosting by mRNA vaccines that do not substantively impact protection against an Omicron strain.IMPORTANCESequential boosting with mRNA vaccines has been an effective strategy to overcome waning immunity and neutralization escape by emerging SARS-CoV-2 variants. However, it remains unclear how the site of boosting relative to the primary vaccination series shapes optimal immune responses or breadth of protection against variants. In K18-hACE2 transgenic mice, we observed that intramuscular boosting with historical monovalent or variant-matched bivalent vaccines in the ipsilateral or contralateral limb elicited comparable levels of serum spike-specific antibody and antigen-specific B and T cell responses. Moreover, boosting on either side conferred equivalent protection against a SARS-CoV-2 Omicron challenge strain. Our data in mice suggest that the site of intramuscular boosting with an mRNA vaccine does not substantially impact immunity or protection against SARS-CoV-2 infection.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Vacunas de ARNm , Animales , SARS-CoV-2/inmunología , Ratones , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/virología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacuna nCoV-2019 mRNA-1273/inmunología , Vacunas de ARNm/inmunología , Femenino , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Humanos , Linfocitos B/inmunología , Linfocitos T/inmunología , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo
7.
J Virol ; 98(9): e0117924, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39207134

RESUMEN

Cardiovascular manifestations of coronavirus disease 2019 (COVID-19) include myocardial injury, heart failure, and myocarditis and are associated with long-term disability and mortality. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and antigens are found in the myocardium of COVID-19 patients, and human cardiomyocytes are susceptible to infection in cell or organoid cultures. While these observations raise the possibility that cardiomyocyte infection may contribute to the cardiac sequelae of COVID-19, a causal relationship between cardiomyocyte infection and myocardial dysfunction and pathology has not been established. Here, we generated a mouse model of cardiomyocyte-restricted infection by selectively expressing human angiotensin-converting enzyme 2 (hACE2), the SARS-CoV-2 receptor, in cardiomyocytes. Inoculation of Myh6-Cre Rosa26loxP-STOP-loxP-hACE2 mice with an ancestral, non-mouse-adapted strain of SARS-CoV-2 resulted in viral replication within the heart, accumulation of macrophages, and moderate left ventricular (LV) systolic dysfunction. Cardiac pathology in this model was transient and resolved with viral clearance. Blockade of monocyte trafficking reduced macrophage accumulation, suppressed the development of LV systolic dysfunction, and promoted viral clearance in the heart. These findings establish a mouse model of SARS-CoV-2 cardiomyocyte infection that recapitulates features of cardiac dysfunctions of COVID-19 and suggests that both viral replication and resultant innate immune responses contribute to cardiac pathology.IMPORTANCEHeart involvement after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection occurs in multiple ways and is associated with worse outcomes in coronavirus disease 2019 (COVID-19) patients. It remains unclear if cardiac disease is driven by primary infection of the heart or immune response to the virus. SARS-CoV-2 is capable of entering contractile cells of the heart in a culture dish. However, it remains unclear how such infection affects the function of the heart in the body. Here, we designed a mouse in which only heart muscle cells can be infected with a SARS-CoV-2 strain to study cardiac infection in isolation from other organ systems. In our model, infected mice show viral infection, worse function, and accumulation of immune cells in the heart. A subset of immune cells facilitates such worsening heart function. As this model shows features similar to those observed in patients, it may be useful for understanding the heart disease that occurs as a part of COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Modelos Animales de Enfermedad , Monocitos , Miocitos Cardíacos , SARS-CoV-2 , Animales , COVID-19/inmunología , COVID-19/virología , COVID-19/patología , Ratones , Miocitos Cardíacos/virología , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Monocitos/inmunología , Monocitos/virología , Humanos , Macrófagos/virología , Macrófagos/inmunología , Replicación Viral , Miocardio/patología , Miocardio/inmunología , Disfunción Ventricular Izquierda/virología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/patología
8.
Immunity ; 57(8): 1812-1827.e7, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38955184

RESUMEN

An important property of the host innate immune response during microbial infection is its ability to control the expression of antimicrobial effector proteins, but how this occurs post-transcriptionally is not well defined. Here, we describe a critical antibacterial role for the classic antiviral gene 2'-5'-oligoadenylate synthetase 1 (OAS1). Human OAS1 and its mouse ortholog, Oas1b, are induced by interferon-γ and protect against cytosolic bacterial pathogens such as Francisella novicida and Listeria monocytogenes in vitro and in vivo. Proteomic and transcriptomic analysis showed reduced IRF1 protein expression in OAS1-deficient cells. Mechanistically, OAS1 binds and localizes IRF1 mRNA to the rough endoplasmic reticulum (ER)-Golgi endomembranes, licensing effective translation of IRF1 mRNA without affecting its transcription or decay. OAS1-dependent translation of IRF1 leads to the enhanced expression of antibacterial effectors, such as GBPs, which restrict intracellular bacteria. These findings uncover a noncanonical function of OAS1 in antibacterial innate immunity.


Asunto(s)
2',5'-Oligoadenilato Sintetasa , Inmunidad Innata , Factor 1 Regulador del Interferón , 2',5'-Oligoadenilato Sintetasa/metabolismo , 2',5'-Oligoadenilato Sintetasa/genética , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Animales , Humanos , Ratones , Biosíntesis de Proteínas/inmunología , Listeria monocytogenes/inmunología , Ratones Noqueados , Ratones Endogámicos C57BL , Listeriosis/inmunología , Interferón gamma/metabolismo , Interferón gamma/inmunología
9.
Cell Rep Med ; 5(7): 101655, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39019010

RESUMEN

Yellow fever virus (YFV) is endemic in >40 countries and causes viscerotropic disease with up to 20%-60% mortality. Successful live-attenuated yellow fever (YF) vaccines were developed in the mid-1930s, but their use is restricted or formally contraindicated in vulnerable populations including infants, the elderly, and people with compromised immune systems. In these studies, we describe the development of a next-generation hydrogen peroxide-inactivated YF vaccine and determine immune correlates of protection based on log neutralizing index (LNI) and neutralizing titer-50% (NT50) studies. In addition, we compare neutralizing antibody responses and protective efficacy of hydrogen peroxide-inactivated YF vaccine candidates to live-attenuated YFV-17D (YF-VAX) in a rhesus macaque model of viscerotropic YF. Our results indicate that an optimized, inactivated YF vaccine elicits protective antibody responses that prevent viral dissemination and lethal infection in rhesus macaques and may be a suitable alternative for vaccinating vulnerable populations who are not eligible to receive replicating live-attenuated YF vaccines.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Peróxido de Hidrógeno , Macaca mulatta , Vacunas de Productos Inactivados , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Vacunas de Productos Inactivados/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas Atenuadas/inmunología , Chlorocebus aethiops , Células Vero , Humanos
10.
J Exp Med ; 221(9)2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39042188

RESUMEN

The contribution of placental immune responses to congenital Zika virus (ZIKV) syndrome remains poorly understood. Here, we leveraged a mouse model of ZIKV infection to identify mechanisms of innate immune restriction exclusively in the fetal compartment of the placenta. ZIKV principally infected mononuclear trophoblasts in the junctional zone, which was limited by mitochondrial antiviral-signaling protein (MAVS) and type I interferon (IFN) signaling mechanisms. Single nuclear RNA sequencing revealed MAVS-dependent expression of IFN-stimulated genes (ISGs) in spongiotrophoblasts but not in other placental cells that use alternate pathways to induce ISGs. ZIKV infection of Ifnar1-/- or Mavs-/- placentas was associated with greater infection of the adjacent immunocompetent decidua, and heterozygous Mavs+/- or Ifnar1+/- dams carrying immunodeficient fetuses sustained greater maternal viremia and tissue infection than dams carrying wild-type fetuses. Thus, MAVS-IFN signaling in the fetus restricts ZIKV infection in junctional zone trophoblasts, which modulates dissemination and outcome for both the fetus and the pregnant mother.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Decidua , Feto , Interferón Tipo I , Placenta , Receptor de Interferón alfa y beta , Transducción de Señal , Trofoblastos , Infección por el Virus Zika , Virus Zika , Femenino , Animales , Embarazo , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Transducción de Señal/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Placenta/inmunología , Placenta/virología , Placenta/metabolismo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Virus Zika/inmunología , Virus Zika/fisiología , Ratones , Decidua/inmunología , Decidua/virología , Decidua/metabolismo , Feto/inmunología , Feto/virología , Trofoblastos/inmunología , Trofoblastos/virología , Trofoblastos/metabolismo , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Inmunidad Innata , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Modelos Animales de Enfermedad
11.
Sci Adv ; 10(31): eadp1290, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39083604

RESUMEN

COVID-19 vaccines have successfully reduced severe disease and death after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Nonetheless, COVID-19 vaccines are variably effective in preventing transmission and symptomatic SARS-CoV-2 infection. Here, we evaluated the impact of mucosal or intramuscular vaccine immunization on airborne infection and transmission of SARS-CoV-2 in Syrian hamsters. Immunization of the primary contact hamsters with a mucosal chimpanzee adenoviral-vectored vaccine (ChAd-CoV-2-S), but not intramuscular messenger RNA (mRNA) vaccine, reduced infectious virus titers ~100-fold and 100,000-fold in the upper and lower respiratory tract of the primary contact hamster following SARS-CoV-2 exposure. This reduction in virus titer in the mucosal immunized contact animals was sufficient to eliminate subsequent transmission to vaccinated and unvaccinated hamsters. In contrast, sequential transmission occurred after systemic immunization with the mRNA vaccine. Thus, immunization with a mucosal COVID-19 vaccine protects against cycles of respiratory transmission of SARS-CoV-2 and can potentially limit the community spread of the virus.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Mesocricetus , SARS-CoV-2 , Animales , COVID-19/prevención & control , COVID-19/transmisión , COVID-19/virología , COVID-19/inmunología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Cricetinae , Inmunización , Vacunación , Humanos , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre
12.
Cell Rep ; 43(7): 114370, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900640

RESUMEN

Protective immunity to dengue virus (DENV) requires antibody response to all four serotypes. Systems vaccinology identifies a multi-OMICs pre-vaccination signature and mechanisms predictive of broad antibody responses after immunization with a tetravalent live attenuated DENV vaccine candidate (Butantan-DV/TV003). Anti-inflammatory pathways, including TGF-ß signaling expressed by CD68low monocytes, and the metabolites phosphatidylcholine (PC) and phosphatidylethanolamine (PE) positively correlate with broadly neutralizing antibody responses against DENV. In contrast, expression of pro-inflammatory pathways and cytokines (IFN and IL-1) in CD68hi monocytes and primary and secondary bile acids negatively correlates with broad DENV-specific antibody responses. Induction of TGF-ß and IFNs is done respectively by PC/PE and bile acids in CD68low and CD68hi monocytes. The inhibition of viral sensing by PC/PE-induced TGF-ß is confirmed in vitro. Our studies show that the balance between metabolites and the pro- or anti-inflammatory state of innate immune cells drives broad and protective B cell response to a live attenuated dengue vaccine.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra el Dengue , Virus del Dengue , Vacunas contra el Dengue/inmunología , Humanos , Virus del Dengue/inmunología , Anticuerpos Antivirales/inmunología , Dengue/inmunología , Dengue/prevención & control , Dengue/virología , Monocitos/inmunología , Monocitos/metabolismo , Formación de Anticuerpos/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/inmunología , Vacunación , Anticuerpos Neutralizantes/inmunología
13.
Nature ; 629(8013): 878-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720086

RESUMEN

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Simulación por Computador , Diseño de Fármacos , SARS-CoV-2 , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Mutación , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Análisis Mutacional de ADN , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , Diseño de Fármacos/métodos
14.
Nature ; 630(8018): 950-960, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749479

RESUMEN

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike protein minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2-infected and uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunización Secundaria , SARS-CoV-2 , Vacunas de ARNm , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Vacuna nCoV-2019 mRNA-1273/administración & dosificación , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , China , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Reacciones Cruzadas/inmunología , Epítopos de Linfocito B/inmunología , Vacunas de ARNm/administración & dosificación , Vacunas de ARNm/genética , Vacunas de ARNm/inmunología , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación
15.
Sci Transl Med ; 16(747): eadl1722, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748773

RESUMEN

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) requires ongoing monitoring to judge the ability of newly arising variants to escape the immune response. A surveillance system necessitates an understanding of differences in neutralization titers measured in different assays and using human and animal serum samples. We compared 18 datasets generated using human, hamster, and mouse serum and six different neutralization assays. Datasets using animal model serum samples showed higher titer magnitudes than datasets using human serum samples in this comparison. Fold change in neutralization of variants compared to ancestral SARS-CoV-2, immunodominance patterns, and antigenic maps were similar among serum samples and assays. Most assays yielded consistent results, except for differences in fold change in cytopathic effect assays. Hamster serum samples were a consistent surrogate for human first-infection serum samples. These results inform the transition of surveillance of SARS-CoV-2 antigenic variation from dependence on human first-infection serum samples to the utilization of serum samples from animal models.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Pruebas de Neutralización , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/sangre , COVID-19/virología , Ratones , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Cricetinae , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad
16.
Sci Data ; 11(1): 328, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565538

RESUMEN

Human infections caused by viral pathogens trigger a complex gamut of host responses that limit disease, resolve infection, generate immunity, and contribute to severe disease or death. Here, we present experimental methods and multi-omics data capture approaches representing the global host response to infection generated from 45 individual experiments involving human viruses from the Orthomyxoviridae, Filoviridae, Flaviviridae, and Coronaviridae families. Analogous experimental designs were implemented across human or mouse host model systems, longitudinal samples were collected over defined time courses, and global multi-omics data (transcriptomics, proteomics, metabolomics, and lipidomics) were acquired by microarray, RNA sequencing, or mass spectrometry analyses. For comparison, we have included transcriptomics datasets from cells treated with type I and type II human interferon. Raw multi-omics data and metadata were deposited in public repositories, and we provide a central location linking the raw data with experimental metadata and ready-to-use, quality-controlled, statistically processed multi-omics datasets not previously available in any public repository. This compendium of infection-induced host response data for reuse will be useful for those endeavouring to understand viral disease pathophysiology and network biology.


Asunto(s)
Multiómica , Virosis , Virus , Animales , Humanos , Ratones , Perfilación de la Expresión Génica/métodos , Metabolómica , Proteómica/métodos , Virosis/inmunología , Interacciones Huésped-Patógeno
17.
Virus Res ; 344: 199357, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38508400

RESUMEN

Coronavirus (CoV) cause considerable morbidity and mortality in humans and other mammals, as evidenced by the emergence of Severe Acute Respiratory CoV (SARS-CoV) in 2003, Middle East Respiratory CoV (MERS-CoV) in 2012, and SARS-CoV-2 in 2019. Although poorly characterized, natural genetic variation in human and other mammals modulate virus pathogenesis, as reflected by the spectrum of clinical outcomes ranging from asymptomatic infections to lethal disease. Using multiple human epidemic and zoonotic Sarbecoviruses, coupled with murine Collaborative Cross genetic reference populations, we identify several dozen quantitative trait loci that regulate SARS-like group-2B CoV pathogenesis and replication. Under a Chr4 QTL, we deleted a candidate interferon stimulated gene, Trim14 which resulted in enhanced SARS-CoV titers and clinical disease, suggesting an antiviral role during infection. Importantly, about 60 % of the murine QTL encode susceptibility genes identified as priority candidates from human genome-wide association studies (GWAS) studies after SARS-CoV-2 infection, suggesting that similar selective forces have targeted analogous genes and pathways to regulate Sarbecovirus disease across diverse mammalian hosts. These studies provide an experimental platform in rodents to investigate the molecular-genetic mechanisms by which potential cross mammalian susceptibility loci and genes regulate type-specific and cross-SARS-like group 2B CoV replication, immunity, and pathogenesis in rodent models. Our study also provides a paradigm for identifying susceptibility loci for other highly heterogeneous and virulent viruses that sporadically emerge from zoonotic reservoirs to plague human and animal populations.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Humanos , Ratones , SARS-CoV-2/genética , Replicación Viral , Estudio de Asociación del Genoma Completo , COVID-19/virología , Proteínas de Motivos Tripartitos/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Modelos Animales de Enfermedad
18.
Biomolecules ; 14(3)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38540792

RESUMEN

Japanese encephalitis virus (JEV) remains a global public health concern due to its epidemiological distribution and the existence of multiple strains. Neutralizing antibodies against this infection have shown efficacy in in vivo studies. Thus, elucidation of the epitopes of neutralizing antibodies can aid in the design and development of effective vaccines against different strains of JEV. Here, we describe a combination of native mass spectrometry (native-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) to complete screening of eight mouse monoclonal antibodies (MAbs) against JEV E-DIII to identify epitope regions. Native-MS was used as a first pass to identify the antibodies that formed a complex with the target antigen, and it revealed that seven of the eight monoclonal antibodies underwent binding. Native mass spectra of a MAb (JEV-27) known to be non-binding showed broad native-MS peaks and poor signal, suggesting the protein is a mixture or that there are impurities in the sample. We followed native-MS with HDX-MS to locate the binding sites for several of the complex-forming antibodies. This combination of two mass spectrometry-based approaches should be generally applicable and particularly suitable for screening of antigen-antibody and other protein-protein interactions when other traditional approaches give unclear results or are difficult, unavailable, or need to be validated.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Hidrógeno , Animales , Ratones , Mapeo Epitopo/métodos , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Deuterio/química , Anticuerpos Antivirales , Epítopos/química , Anticuerpos Neutralizantes , Espectrometría de Masas/métodos , Anticuerpos Monoclonales
19.
Sci Adv ; 10(12): eadi8594, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38507486

RESUMEN

Marine cloud brightening (MCB) is the deliberate injection of aerosol particles into shallow marine clouds to increase their reflection of solar radiation and reduce the amount of energy absorbed by the climate system. From the physical science perspective, the consensus of a broad international group of scientists is that the viability of MCB will ultimately depend on whether observations and models can robustly assess the scale-up of local-to-global brightening in today's climate and identify strategies that will ensure an equitable geographical distribution of the benefits and risks associated with projected regional changes in temperature and precipitation. To address the physical science knowledge gaps required to assess the societal implications of MCB, we propose a substantial and targeted program of research-field and laboratory experiments, monitoring, and numerical modeling across a range of scales.

20.
Cell Rep ; 43(3): 113876, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446669

RESUMEN

Alphaviruses are mosquito-transmitted pathogens that induce high levels of viremia, which facilitates dissemination and vector transmission. One prevailing paradigm is that, after skin inoculation, alphavirus-infected resident dendritic cells migrate to the draining lymph node (DLN), facilitating further rounds of infection and dissemination. Here, we assess the contribution of infiltrating myeloid cells to alphavirus spread. We observe two phases of virus transport to the DLN, one that occurs starting at 1 h post infection and precedes viral replication, and a second that requires replication in the skin, enabling transit to the bloodstream. Depletion of Ly6C+ monocytes reduces local chikungunya (CHIKV) or Ross River virus (RRV) infection in the skin, diminishes the second phase of virus transport to the DLN, and delays spread to distal sites. Our data suggest that infiltrating monocytes facilitate alphavirus infection at the initial infection site, which promotes more rapid spread into circulation.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Monocitos/patología , Mosquitos Vectores , Fiebre Chikungunya/patología , Células Mieloides , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA