RESUMEN
Bone disease associated with multiple myeloma (MM) is characterized by osteolytic lesions and pathological fractures, which remain a therapeutic priority despite new drugs improving MM patient survival. Antiresorptive molecules represent the main option for the treatment of MM-associated bone disease (MMBD), whereas osteoanabolic molecules are under investigation. Among these latter, we here focused on the myokine irisin, which is able to enhance bone mass in healthy mice, prevent bone loss in osteoporotic mouse models, and accelerate fracture healing in mice. Therefore, we investigated irisin effect on MMBD in a mouse model of MM induced by intratibial injection of myeloma cells followed by weekly administration of 100 µg/kg of recombinant irisin for 5 wk. By micro-Ct analysis, we demonstrated that irisin improves MM-induced trabecular bone damage by partially preventing the reduction of femur Trabecular Bone Volume/Total Volume (P = .0028), Trabecular Number (P = .0076), Trabecular Fractal Dimension (P = .0044), and increasing Trabecular Separation (P = .0003) in MM mice. In cortical bone, irisin downregulates the expression of Sclerostin, a bone formation inhibitor, and RankL, a pro-osteoclastogenic molecule, while in BM it upregulates Opg, an anti-osteoclastogenic cytokine. We found that in the BM tibia of irisin-treated MM mice, the percentage of MM cells displays a reduction trend, while in the femur it decreases significantly. This is in line with the in vitro reduction of myeloma cell viability after 48 h of irisin stimulation at both 200 and 500 ng/mL and, after 72 h already at 100 ng/mL rec-irisin. These results could be due to irisin ability to downregulate the expression of Notch 3, which is important for cell-to-cell communication in the tumor niche, and Cyclin D1, supporting an inhibitory effect of irisin on MM cell proliferation. Overall, our findings suggest that irisin could be a new promising strategy to counteract MMBD and tumor burden in one shot.
RESUMEN
OBJECTIVE: Irisin, released by muscles during exercise, was recently identified as a neuroprotective factor in mouse models of Alzheimer disease (AD). In a cohort of AD patients, we studied cerebrospinal fluid (CSF) and plasma irisin levels, sex interactions, and correlations with disease biomarkers. METHODS: Correlations between CSF and plasma irisin levels and AD biomarkers (amyloid ß 1-42, hyperphosphorylated tau, and total tau [t-tau]) and Clinical Dementia Rating Scale Sum of Boxes (CDR-SOB) were analyzed in a cohort of patients with Alzheimer dementia (n = 82), mild cognitive impairment (n = 44), and subjective memory complaint (n = 20) biologically characterized according to the recent amyloid/tau/neurodegeneration classification. RESULTS: CSF irisin was reduced in Alzheimer dementia patients (p < 0.0001), with lower levels in female patients. Moreover, CSF irisin correlated positively with Aß42 in both female (r = 0.379, p < 0.001) and male (r = 0.262, p < 0.05) patients, and negatively with CDR-SOB (r = -0.234, p < 0.05) only in female patients. A negative trend was also observed between CSF irisin and t-tau levels in all patients (r = -0.144, p = 0.082) and in the female subgroup (r = -0.189, p = 0.084). INTERPRETATION: The results highlight the relationship between irisin and biomarkers of AD pathology, especially in females. Our findings also offer perspectives toward the use of irisin as a marker of the AD continuum. ANN NEUROL 2024;96:61-73.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Fibronectinas , Fragmentos de Péptidos , Proteínas tau , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Femenino , Masculino , Fibronectinas/líquido cefalorraquídeo , Fibronectinas/sangre , Anciano , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/sangre , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/sangre , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Fragmentos de Péptidos/sangre , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Anciano de 80 o más Años , Estudios de CohortesRESUMEN
Irisin is a peptide secreted by skeletal muscle that plays a major role in bone metabolism. Experiments in mouse models have shown that administration of recombinant irisin prevents disuse-induced bone loss. In this study, we aimed to evaluate the effects of irisin treatment for the prevention of bone loss in the ovariectomized (Ovx) mouse, the animal model commonly used to investigate osteoporosis caused by estrogen deficiency. Micro-Ct analysis conducted on Sham mice (Sham-veh) and Ovx mice treated with vehicle (Ovx-veh) or recombinant irisin (Ovx-irisn) showed bone volume fraction (BV/TV) decreases in femurs (Ovx-veh 1.39± 0.71 vs. Sham-veh 2.84 ± 1.23; p = 0.02) and tibia at both proximal condyles (Ovx-veh 1.97 ± 0.68 vs. Sham-veh 3.48 ± 1.26; p = 0.03) and the subchondral plate (Ovx-veh 6.33 ± 0.36 vs. Sham-veh 8.18 ± 0.41; p = 0.01), which were prevented by treatment with a weekly dose of irisin for 4 weeks. Moreover, histological analysis of trabecular bone showed that irisin increased the number of active osteoblasts per bone perimeter (Ovx-irisin 32.3 ± 3.9 vs. Ovx-veh 23.5 ± 3.6; p = 0.01), while decreasing osteoclasts (Ovx-irisin 7.6 ± 2.4 vs. Ovx-veh 12.9 ± 3.04; p = 0.05). The possible mechanism by which irisin enhances osteoblast activity in Ovx mice is upregulation of the transcription factor Atf4, one of the key markers of osteoblast differentiation, and osteoprotegerin, thereby inhibiting osteoclast formation.
Asunto(s)
Enfermedades Óseas Metabólicas , Osteoporosis , Ratones , Animales , Femenino , Humanos , Fibronectinas/farmacología , Hueso Esponjoso/patología , Osteoporosis/patología , Modelos Animales de Enfermedad , Osteoblastos/patología , Ovariectomía/efectos adversos , Densidad ÓseaRESUMEN
As a result of physical exercise, muscle releases multiple exerkines, such as "irisin", which is thought to induce pro-cognitive and antidepressant effects. We recently demonstrated in young healthy mice the mitigation of depressive behaviors induced by consecutive 5 day irisin administration. To understand which molecular mechanisms might be involved in such effect, we here studied, in a group of mice previously submitted to a behavioral test of depression, the gene expression of neurotrophins and cytokines in the hippocampus and prefrontal cortex (PFC), two brain areas frequently investigated in the depression pathogenesis. We found significantly increased mRNA levels of nerve growth factor (NGF) and fibroblast growth factor 2 (FGF-2) in the hippocampus and brain-derived growth factor (BDNF) in the PFC. We did not detect a difference in the mRNA levels of interleukin 6 (IL-6) and IL-1ß in both brain regions. Except for BDNF in the PFC, two-way ANOVA analysis did not reveal sex differences in the expression of the tested genes. Overall, our data evidenced a site-specific cerebral modulation of neurotrophins induced by irisin treatment in the hippocampus and the PFC, contributing to the search for new antidepressant treatments targeted at single depressive events with short-term protocols.
Asunto(s)
Antidepresivos , Factor Neurotrófico Derivado del Encéfalo , Ratones , Femenino , Masculino , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Antidepresivos/farmacología , Hipocampo/metabolismo , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismoRESUMEN
Major depression is one of the most common psychiatric disorders worldwide, usually associated with anxiety. The multi-etiological nature of depression has increased the search for new antidepressant molecules, including irisin, for which, in a previous study, we tested its effect in young mice when administered intraperitoneally in a long-term intermittent manner. Here, we evaluated the effect of subcutaneous short-term irisin administration (100 µg/Kg/day/5 days) in male and female mice subjected to behavioral paradigms: Tail Suspension Test (TST), Forced Swim Test (FST), Elevated Plus Maze (EPM), and Y Maze (YM). Moreover, a qRT-PCR assay was performed to analyze the impact of irisin treatment on Pgc-1α/FNDC5 expression in the brain. A significant reduction in immobility time in TST and FST was observed in irisin-treated mice. Furthermore, irisin treatment significantly increased the number of entries and time spent in open arms, demonstrating its anxiolytic effect. Memory-enhancing effects were not reported in YM. Interestingly, no gender differences were observed in all behavioral tests. Overall, these results suggest that short-term subcutaneous irisin administration can exert an antidepressant and anxiolytic role, probably due to the activation of the Pgc-1α/FNDC5 system in the brain. Further investigation could lead to the identification of irisin as a new agent for the treatment of psychiatric disorders.
Asunto(s)
Ansiolíticos , Depresión , Ratones , Masculino , Femenino , Animales , Depresión/tratamiento farmacológico , Depresión/metabolismo , Fibronectinas/metabolismo , Ansiedad/tratamiento farmacológico , Antidepresivos/farmacología , Ansiolíticos/farmacología , Conducta AnimalRESUMEN
Irisin is a myokine synthesized by skeletal muscle, which performs key actions on whole-body metabolism. Previous studies have hypothesized a relationship between irisin and vitamin D, but the pathway has not been thoroughly investigated. The purpose of the study was to evaluate whether vitamin D supplementation affected irisin serum levels in a cohort of 19 postmenopausal women with primary hyperparathyroidism (PHPT) treated with cholecalciferol for six months. In parallel, to understand the possible link between vitamin D and irisin, we analyzed the expression of the irisin precursor, Fndc5, in the C2C12 myoblast cell line treated with a biologically active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Our results demonstrate that vitamin D supplementation resulted in a significant increase in irisin serum levels (p = 0.031) in PHPT patients. In vitro, we show that vitamin D treatment on myoblasts enhanced Fndc5 mRNA after 48 h (p = 0.013), while it increased mRNAs of sirtuin 1 (Sirt1) (p = 0.041) and peroxisome proliferator-activated receptor γ coactivator 1α (Pgc1α) (p = 0.017) over a shorter time course. Overall, our data suggest that vitamin-D-induced modulation of Fndc5/irisin occurs through up-regulation of Sirt1, which together with Pgc1α, is an important regulator of numerous metabolic processes in skeletal muscle.
Asunto(s)
Colestanos , Fibronectinas , Humanos , Femenino , Fibronectinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/metabolismo , Músculo Esquelético/metabolismo , Factores de Transcripción/metabolismo , Vitaminas/metabolismo , Vitamina D/metabolismoRESUMEN
The identification of biomarkers and countermeasures to prevent the adverse effects on the musculoskeletal system caused by the absence of mechanical loading is the main goal of space biomedical research studies. In this study, we analyzed over 4 weeks of unloading, the modulation in the expression of key proteins in Vastus lateralis, Gastrocnemius and cortical bone in parallel with the modulation of irisin serum levels and its precursor FNDC5 in skeletal muscle of hind limb unloaded (HU) mice. Here we report that Atrogin-1 was up-regulated as early as 1- and 2-week of unloading, whereas Murf-1 at 2- and 3-weeks, along with a marked modulation in the expression of myosin heavy chain isoforms during unloading. Since HU mice showed reduced irisin serum levels at 4-weeks, as well as FNDC5 decrease at 3- and 4-weeks, we treated HU mice with recombinant irisin for 4 weeks, showing that unloading-dependent decline of myosin heavy chain isoforms, MyHCIIα and MyHCIIx, and the anti-apoptotic factor Bcl2, were prevented. In parallel, irisin treatment inhibited the increase of the senescence marker p53, and the pro-apoptotic factor Bax. Overall, these results suggest that the myokine irisin could be a possible therapy to counteract the musculoskeletal impairment caused by unloading.
RESUMEN
The bed rest (BR) is a ground-based model to simulate microgravity mimicking skeletal-muscle alterations as in spaceflight. Molecular coupling between bone and muscle might be involved in physiological and pathological conditions. Thus, the new myokine irisin and bone-muscle turnover markers have been studied during and after 10 days of BR. Ten young male individuals were subjected to 10 days of horizontal BR. Serum concentrations of irisin, myostatin, sclerostin, and haptoglobin were assessed, and muscle tissue gene expression on vastus lateralis biopsies was determined. During 10-days BR, we observed no significant fluctuation levels of irisin, myostatin, and sclerostin. Two days after BR (R+2), irisin serum levels significantly decreased while myostatin, sclerostin, and haptoglobin were significantly increased compared with BR0. Gene expression of myokines, inflammatory molecules, transcription factors, and markers of muscle atrophy and senescence on muscle biopsies were not altered, suggesting that muscle metabolism of young, healthy subjects is able to adapt to the hypomobility condition during 10-day BR. However, when subjects were divided according to irisin serum levels at BR9, muscle ring finger-1 mRNA expression was significantly lower in subjects with higher irisin serum levels, suggesting that this myokine may prevent the triggering of muscle atrophy. Moreover, the negative correlation between p21 mRNA and irisin at BR9 indicated a possible inhibitory effect of the myokine on the senescence marker. In conclusion, irisin could be a prognostic marker of hypomobility-induced muscle atrophy, and its serum levels could protect against muscle deterioration by preventing and/or delaying the expression of atrophy and senescence cellular markers.
Asunto(s)
Atrofia Muscular , Humanos , MasculinoRESUMEN
Irisin is an adipo-myokine, mainly synthetized in skeletal muscles and adipose tissues, that is involved in multiple processes. Only a few studies have evaluated serum irisin in psoriatic patients. This study aims to analyze serum irisin levels in patients with chronic plaque psoriasis, to compare them with values in controls, and to assess whether concentration of circulating irisin correlates with the severity of psoriasis, calculated by means of Psoriasis Area and Severity Index (PASI). We enrolled 46 patients with chronic plaque psoriasis; the control group included 46 sex- and age-matched subjects without any skin or systemic diseases. Serum irisin levels were measured by competitive enzyme linked immunosorbent assay. Our results showed a non-significant increase in serum irisin concentration in psoriatic patients compared to controls. A negative non-linear correlation between PASI and irisin levels was detected in psoriatic patients. Indeed, dividing patients according to psoriasis severity, the negative association between irisin and PASI was stronger in patients with mild psoriasis than in patients with higher PASI scores. Several control variables we tested showed no significant impact on serum irisin. However, erythrocyte sedimentation rate in the normal range was associated with significantly higher irisin levels in psoriatic patients. In conclusion, although irisin levels were not significantly different between controls and psoriatic patients, irisin was found to be negatively associated with psoriasis severity, especially in subjects with low PASI scores; however, further studies are needed to clarify the role of irisin in subjects with psoriasis.
Asunto(s)
Fibronectinas , Psoriasis , Estudios de Casos y Controles , Ensayo de Inmunoadsorción Enzimática , Humanos , Índice de Severidad de la EnfermedadRESUMEN
Depression is a psychiatric disorder increasingly diffused worldwide. Evidence suggests that irisin, a myokine secreted by contracting muscle, mediates beneficial effects on several targets, including the brain. Here, the potential antidepressant properties of long-term intermittent systemic irisin administration (100 µg/kg/weekly for 1 month) were evaluated in mice by the Tail Suspension Test (TST), Forced Swim Test (FST), and Open Field Test (OFT). Furthermore, to deepen the molecular pathways underlying irisin treatment, the expression of irisin precursor, neurotrophic/growth factors, and cytokines was analyzed. Irisin treatment significantly decreased the immobility time in the TST and FST, suggesting an antidepressant effect. Additionally, irisin seemed to display an anxiolytic-like effect increasing the time spent in the OFT arena center. These findings were probably due to the modulation of endogenous brain factors as the gene expression of some neurotrophins, such as brain-derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1), was upregulated only in irisin-treated mouse brain. Moreover, irisin modulated the expression of some cytokines (IL-1ß, IL-4, IL-6, and IL-10). To the best of our knowledge, this is the first study demonstrating that the irisin antidepressant effect may be observed even with a systemic administration in mice. This could pave the way toward intriguing preclinical research in humans.
Asunto(s)
Antidepresivos , Depresión , Fibronectinas , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibronectinas/genética , Fibronectinas/farmacología , Fibronectinas/uso terapéutico , Suspensión Trasera , Ratones , NataciónRESUMEN
Background: Charcot-Marie-Tooth (CMT) indicates a group of inherited polyneuropathies whose clinical phenotypes primarily include progressive distal weakness and muscle atrophy. Compelling evidence showed that the exercise-mimetic myokine irisin protects against muscle wasting in an autocrine manner, thus possibly preventing the onset of musculoskeletal atrophy. Therefore, we sought to determine if irisin serum levels correlate with biochemical and muscle parameters in a cohort of CMT patients. Methods: This cohort study included individuals (N=20) diagnosed with CMT disease. Irisin and biochemical markers were quantified in sera. Skeletal muscle mass (SMM) was evaluated by bioelectric impedance analysis, muscle strength by handgrip, and muscle quality was derived from muscle strength and muscle mass ratio. Results: CMT patients (m/f, 12/8) had lower irisin levels than age and sex matched healthy subjects (N=20) (6.51 ± 2.26 vs 9.34 ± 3.23 µg/ml; p=0.003). SMM in CMT patients was always lower compared to SMM reference values reported in healthy Caucasian population matched for age and sex. Almost the totality of CMT patients (19/20) showed low muscle quality and therefore patients were evaluated on the basis of muscle strength. Irisin was lower in presence of pathological compared to normal muscle strength (5.56 ± 1.26 vs 7.67 ± 2.72 µg/ml; p=0.03), and directly correlated with the marker of bone formation P1PN (r= 0.669; 95%CI 0.295 to 0.865; p=0.002), but inversely correlated with Vitamin D (r=-0.526; 95%CI -0,791 to -0,095; p=0.017). Surprisingly, in women, irisin levels were higher than in men (7.31 ± 2.53 vs 5.31 ± 1.02 µg/ml, p=0.05), and correlated with both muscle strength (r=0.759; 95%CI 0.329 to 0.929; p=0.004) and muscle quality (r=0.797; 95%CI 0.337 to 0.950; p=0.006). Conclusion: Our data demonstrate lower irisin levels in CMT patients compared to healthy subjects. Moreover, among patients, we observed, significantly higher irisin levels in women than in men, despite the higher SMM in the latter. Future studies are necessary to establish whether, in this clinical contest, irisin could represent a marker of the loss of muscle mass and strength and/or bone loss.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Fibronectinas , Fuerza de la Mano , Atrofia Muscular , Biomarcadores , Enfermedad de Charcot-Marie-Tooth/diagnóstico , Estudios de Cohortes , Femenino , Fibronectinas/sangre , Humanos , Masculino , Músculo Esquelético , Atrofia Muscular/etiologíaRESUMEN
Irisin is a peptide secreted by skeletal muscle following exercise that plays an important role in bone metabolism. Numerous experiments in vitro and in mouse models have shown that the administration of recombinant irisin promotes osteogenesis, protects osteocytes from dexamethasone-induced apoptosis, prevents disuse-induced loss of bone and muscle mass, and accelerates fracture healing. Although some aspects still need to be elucidated, such as the dose- and frequency-dependent effects of irisin in cell cultures and mouse models, ample clinical evidence is emerging to support its physiological relevance on bone in humans. A reduction in serum irisin levels, associated with an increased risk of osteoporosis and bone fractures, was observed in postmenopausal women and in both men and women during aging, Recently, cohort studies of subjects with secondary osteoporosis showed that these patients have lower circulating levels of irisin, suggesting that this myokine could be a novel marker to monitor bone quality in this disease. Although there are still few studies, this review discusses the emerging data that are highlighting the involvement of irisin in some diseases that cause secondary osteoporosis.
Asunto(s)
Fibronectinas/metabolismo , Osteoporosis/patología , Humanos , Modelos Biológicos , Proteínas Recombinantes/farmacologíaRESUMEN
To date, pharmacological strategies designed to accelerate bone fracture healing are lacking. We subjected 8-week-old C57BL/6 male mice to closed, transverse, mid-diaphyseal tibial fractures and treated them with intraperitoneal injection of a vehicle or r-irisin (100 µg/kg/weekly) immediately following fracture for 10 days or 28 days. Histological analysis of the cartilaginous callus at 10 days showed a threefold increase in Collagen Type X (p = 0.0012) and a reduced content of proteoglycans (40%; p = 0.0018). Osteoclast count within the callus showed a 2.4-fold increase compared with untreated mice (p = 0.026), indicating a more advanced stage of endochondral ossification of the callus during the early stage of fracture repair. Further evidence that irisin induced the transition of cartilage callus into bony callus was provided by a twofold reduction in the expression of SOX9 (p = 0.0058) and a 2.2-fold increase in RUNX2 (p = 0.0137). Twenty-eight days post-fracture, microCT analyses showed that total callus volume and bone volume were increased by 68% (p = 0.0003) and 67% (p = 0.0093), respectively, and bone mineral content was 74% higher (p = 0.0012) in irisin-treated mice than in controls. Our findings suggest that irisin promotes bone formation in the bony callus and accelerates the fracture repair process, suggesting a possible use as a novel pharmacologic modulator of fracture healing.
Asunto(s)
Cartílago/citología , Fibronectinas/administración & dosificación , Curación de Fractura , Fracturas Óseas/terapia , Osteoclastos/citología , Osteogénesis , Proteínas Recombinantes/administración & dosificación , Animales , Cartílago/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismoRESUMEN
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.
Asunto(s)
Huesos/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Animales , Huesos/fisiología , Diferenciación Celular/genética , Humanos , Ratones , Mitocondrias/metabolismo , Biogénesis de Organelos , Osteoblastos/metabolismo , Osteocitos/metabolismo , Osteogénesis , Transducción de Señal , Sirtuina 3/metabolismo , Factores de Transcripción/metabolismoRESUMEN
The myokine irisin, well known for its anabolic effect on bone tissue, has been demonstrated to positively act on osteoblastic differentiation processes in vitro. Mesenchymal stem cells (MSCs) have captured great attention in precision medicine and translational research for several decades due to their differentiation capacity, potent immunomodulatory properties, and their ability to be easily cultured and manipulated. Dental bud stem cells (DBSCs) are MSCs, isolated from dental tissues, that can effectively undergo osteoblastic differentiation. In this study, we analyzed, for the first time, the effects of irisin on DBSC osteogenic differentiation in vitro. Our results indicated that DBSCs were responsive to irisin, showed an enhanced expression of osteocalcin (OCN), a late marker of osteoblast differentiation, and displayed a greater mineral matrix deposition. These findings lead to deepening the mechanism of action of this promising molecule, as part of osteoblastogenesis process. Considering the in vivo studies of the effects of irisin on skeleton, irisin could improve bone tissue metabolism in MSC regenerative procedures.
RESUMEN
Irisin, the circulating peptide originating from fibronectin type III domain-containing protein 5 (FNDC5), is mainly expressed by muscle fibers under peroxisome proliferator-activated receptor gamma coactivator 1-alpha PGC1α control during exercise. In addition to several beneficial effects on health, physical activity positively affects nervous system functioning, particularly the hippocampus, resulting in amelioration of cognition impairments. Recently, FNDC5/irisin detection in hippocampal neurons and the presence of irisin in the cerebrospinal fluid opened a new intriguing chapter in irisin history. Interestingly, in the hippocampus of mice, exercise increases FNDC5 levels and upregulates brain-derived neurotrophic factor (BDNF) expression. BDNF, displaying neuroprotection and anti-inflammatory effects, is mainly produced by microglia and astrocytes. In this review, we discuss how these glial cells can morphologically and functionally switch during neuroinflammation by modulating the expression of a plethora of neuroprotective or neurotoxic factors. We also focus on studies investigating the irisin role in neurodegenerative diseases (ND). The emerging involvement of irisin as a mediator of the multiple positive effects of exercise on the brain needs further studies to better deepen this issue and the potential use in therapeutic approaches for neuroinflammation and ND.
Asunto(s)
Fibronectinas/metabolismo , Inflamación/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ejercicio Físico/fisiología , Fibronectinas/genética , Hipocampo/metabolismo , Humanos , Inflamación/etiología , Ratones , Modelos Neurológicos , Enfermedades Neurodegenerativas/etiología , Neuroinmunomodulación , Condicionamiento Físico Animal/fisiologíaRESUMEN
(1) Background: Colorectal cancer (CRC) is among the best examples of the relationship between inflammation and increased cancer risk. (2) Methods: To examine the effects of spontaneous low-grade chronic inflammation on the pathogenesis of CRC, we developed a new murine model of colitis-associated cancer (CAC) by crossing Mucin 2 mutated mice (Winnie) with ApcMin/+ mice. (3) Results: The resulting Winnie-ApcMin/+ model combines an inflammatory background with a genetic predisposition to small intestinal polyposis. Winnie-ApcMin/+ mice show an early occurrence of inflammatory signs and dysplastic lesions in the distal colon with a specific molecular signature. (4) Conclusion: The Winnie-ApcMin/+ model is a perfect model to demonstrate that chronic inflammation represents a crucial risk factor for the onset and progression of tumoral lesions in individuals genetically predisposed to CRC.
Asunto(s)
Neoplasias Asociadas a Colitis/etiología , Susceptibilidad a Enfermedades , Genes APC , Animales , Apoptosis/genética , Biopsia , Proliferación Celular , Citoesqueleto , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Predisposición Genética a la Enfermedad , Inmunohistoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Clasificación del TumorRESUMEN
Iron overload is an undesired effect of frequent blood transfusions or genetic diseases. Myelodysplastic syndrome (MDS) patients become transfusion dependent, but due to the combination of ineffective haematopoiesis and repeated blood transfusions they are often subject to iron overload. In this study, we demonstrate that iron-overload mimicking condition alters bone marrow progenitor differentiation towards dendritic cells (DCs). Cells cultured in iron-enriched culture medium for seven days fail to differentiate into conventional CD11c+MHCIIhi DCs and fail to efficiently respond to LPS (Lipopolysaccharides). Cells appear smaller than control DCs but vital and able to perform FITC-dextran (Fluorescein isothiocyanate-dextran) endocytosis. At molecular level, cells cultured in iron-enriched conditions show increased ARG1 and PU.1, and decreased IRF8 expression.
Asunto(s)
Médula Ósea/metabolismo , Antígeno CD11c/metabolismo , Diferenciación Celular/fisiología , Células Dendríticas/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Sobrecarga de Hierro/metabolismo , Animales , Arginasa/genética , Arginasa/metabolismo , Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Citocinas/metabolismo , Células Dendríticas/efectos de los fármacos , Regulación de la Expresión Génica , Hematopoyesis , Inflamación , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Lipopolisacáridos/efectos adversos , Ratones , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Transactivadores/metabolismoRESUMEN
BACKGROUND: Inflammatory bowel disease (IBD), including Crohn disease (CD) and ulcerative colitis (UC), is a multifactorial disorder characterized by chronic inflammation and altered gut barrier function. Dysbiosis, a condition defined by dysregulation of the gut microbiome, has been reported in patients with IBD and in experimental models of colitis. Although several factors have been implicated in directly affecting gut microbial composition, the genetic determinants impacting intestinal dysbiosis in IBD remain relatively unknown. METHODS: We compared the microbiome of normal, uninflamed wild-type (WT) mice with that of a murine model of UC (ie, Winnie strain). Winnie mice possess a missense mutation in Muc2 that manifests in altered mucus production as early as 4 weeks of age, with ensuing colonic inflammation. To better address the potential role of mutant Muc2 in promoting dysbiosis in Winnie mice, we evaluated homozygous mutant mice (Winnie-/-) with their WT littermates that, after weaning from common mothers, were caged separately according to genotype. Histologic and inflammatory status were assessed over time, along with changes in their respective microbiome compositions. RESULTS: Dysbiosis in Winnie mice was already established at 4 weeks of age, before histologic evidence of gut inflammatory changes, in which microbial communities diverged from that derived from their mothers. Furthermore, dysbiosis persisted until 12 weeks of age, with peak differences in microbiome composition observed between Winnie and WT mice at 8 weeks of age. The relative abundance of Bacteroidetes was greater in Winnie compared with WT mice. Verrucomicrobia was detected at the highest relative levels in 4-week-old Winnie mice; in particular, Akkermansia muciniphila was among the most abundant species found at 4 weeks of age. CONCLUSIONS: Our results demonstrate that mutant genetic determinants involved in the complex regulation of intestinal homeostasis, such as that observed in Winnie mice, are able to promote early gut dysbiosis that is independent from maternal microbial transfer, including breastfeeding. Our data provide evidence for intestinal dysbiosis attributed to a Muc2-driven mucus defect that leads to colonic inflammation and may represent an important target for the design of future interventional studies.
Asunto(s)
Colitis/genética , Disbiosis/genética , Microbioma Gastrointestinal , Mucosa Intestinal/patología , Mucina 2/genética , Factores de Edad , Animales , Peso Corporal , Colitis/fisiopatología , Colon/fisiopatología , Modelos Animales de Enfermedad , Disbiosis/fisiopatología , Femenino , Inflamación/genética , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación Missense , ARN Ribosómico 16S/genética , Factores SexualesRESUMEN
Inflammatory bowel diseases (IBDs) are chronic and relapsing immune disorders that result, or possibly originate, from epithelial barrier defects. Intestinal organoids are a new reliable tool to investigate epithelial response in models of chronic inflammation. We produced organoids from the ulcerative colitis murine model Winnie to explore if the chronic inflammatory features observed in the parental intestine were preserved by the organoids. Furthermore, we investigated if quercetin administration to in vitro cultured organoids could suppress LPS-induced inflammation in wild-type organoids (WT-organoids) and spontaneous inflammation in ulcerative colitis organoids (UC-organoids). Our data demonstrate that small intestinal organoids obtained from Winnie mice retain the chronic intestinal inflammatory features characteristic of the parental tissue. Quercetin administration was able to suppress inflammation both in UC-organoids and in LPS-treated WT-organoids. Altogether, our data demonstrate that UC-organoids are a reliable experimental system for investigating chronic intestinal inflammation and pharmacological responses.