RESUMEN
Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs). In line with the key role of CCL22 to facilitate DC-Treg cell interaction, RelB-deficient DCs have a selective advantage to interact with Treg cells in an antigen-specific manner. In addition, DC-specific RelB knockout animals show increased total Foxp3+ Treg cell numbers irrespective of inflammatory status. Consequently, DC-specific RelB knockout animals fail to mount protective Th2-dominated immune responses in the intestine after infection with Heligmosomoides polygyrus bakeri. Thus, RelB expression in cDCs acts as a rheostat to establish a tolerogenic set point that is maintained even during strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Asunto(s)
Células Dendríticas , Tolerancia Inmunológica , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T Reguladores , Factor de Transcripción ReIB , Animales , Factor de Transcripción ReIB/metabolismo , Factor de Transcripción ReIB/genética , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Linfocitos T Reguladores/inmunología , Ratones , Movimiento Celular , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Quimiocina CCL22/metabolismo , Quimiocina CCL22/genética , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Infecciones por Strongylida/inmunología , Infecciones por Strongylida/parasitología , Diferenciación Celular , Células Th2/inmunologíaRESUMEN
Aim: Extracorporeal cardiopulmonary resuscitation (ECPR) by veno-arterial extracorporeal membrane oxygenation (VA-ECMO) during refractory cardiac arrest presents significant medical and psychological challenges for healthcare providers. Beyond managing cardiac arrest and preparing for potential coronary angiography, the ECMO circuit must be assembled and primed under strictly sterile conditions, contributing to additional psychological stress and potential delays in ECMO cannulation. This pragmatic study thought to evaluate whether pre-assembled and pre-primed ECMO circuits (pre-primed group) maintain sterility over a 21-day period, expedite ECMO initiation in ECPR patients and alleviate the psychological burden on the ECPR team, compared to newly assembled and primed ECMO circuits (on-demand group). Methods: In a prospective manner, ECMO circuits were either pre-assembled and pre-primed under sterile conditions, maintained for 21 days with culture samples taken every seventh day, or newly assembled and primed during the acute emergency situation. The transition from on-demand assembly and priming of ECMO circuits to pre-primed ECMO circuits occurred on January 1st, 2021. The interval between patients' arrival in the cardiac catheterization laboratory and the initiation of ECMO was recorded and retrospectively compared between the two treatment groups. The ECPR team, comprising experienced cardiologists and nurses, was prospectively surveyed using the modified Perceived Stress Questionnaire (PSQ-20). Results: All aseptically pre-assembled and pre-primed ECMO circuits demonstrated sterile cultures for aerobic and anaerobic microorganisms as well as fungal agents over the 21-day period: 0/120 positive cultures (0 %, 95 % CI for binomial probability 0-0.03). The time to ECMO initiation was significantly reduced in the pre-primed group compared to the on-demand group: 13 [IQR 9-17] versus 31 [IQR 27-44] minutes, P < 0.001. Responses from ECPR physicians and nurses on the PSQ-20 were similar across all items. With the use of pre-primed ECMO circuits, all ECPR professionals reported a greater sense of settled inner feeling, considerably less psychological tension, fewer worries and insecurities, as well as more effective ICU shifts with improved personal goal achievement. However, treating ECPR patients with pre-primed ECMO circuits did not lead to increased job satisfaction or higher physical energy levels. Conclusion: Aseptically pre-assembled and pre-primed ECMO circuits maintain sterility for multiple weeks, significantly reducing ECMO initiation times and alleviating psychological strain on the ECPR team. Consequently, implementing these circuits in ECPR centers could enhance both patient outcomes and healthcare provider well-being.
RESUMEN
In systemic lupus erythematosus, loss of immune tolerance, autoantibody production and immune complex deposition are required but not sufficient for organ damage1. How inflammatory signals are initiated and amplified in the setting of autoimmunity remains elusive. Here we set out to dissect layers and hierarchies of autoimmune kidney inflammation to identify tissue-specific cellular hubs that amplify autoinflammatory responses. Using high-resolution single-cell profiling of kidney immune and parenchymal cells, in combination with antibody blockade and genetic deficiency, we show that tissue-resident NKp46+ innate lymphoid cells (ILCs) are crucial signal amplifiers of disease-associated macrophage expansion and epithelial cell injury in lupus nephritis, downstream of autoantibody production. NKp46 signalling in a distinct subset of group 1 ILCs (ILC1s) instructed an unconventional immune-regulatory transcriptional program, which included the expression of the myeloid cell growth factor CSF2. CSF2 production by NKp46+ ILCs promoted the population expansion of monocyte-derived macrophages. Blockade of the NKp46 receptor (using the antibody clone mNCR1.15; ref. 2) or genetic deficiency of NKp46 abrogated epithelial cell injury. The same cellular and molecular patterns were operative in human lupus nephritis. Our data provide support for the idea that NKp46+ ILC1s promote parenchymal cell injury by granting monocyte-derived macrophages access to epithelial cell niches. NKp46 activation in ILC1s therefore constitutes a previously unrecognized, crucial tissue rheostat that amplifies organ damage in autoimmune hosts, with broad implications for inflammatory pathologies and therapies.
Asunto(s)
Inmunidad Innata , Nefritis Lúpica , Macrófagos , Receptor 1 Gatillante de la Citotoxidad Natural , Animales , Ratones , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Humanos , Nefritis Lúpica/inmunología , Nefritis Lúpica/patología , Nefritis Lúpica/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Femenino , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Células Epiteliales/patología , Masculino , Linfocitos/inmunología , Linfocitos/metabolismo , Riñón/patología , Riñón/inmunología , Riñón/metabolismo , Antígenos Ly/metabolismo , Autoanticuerpos/inmunología , Autoinmunidad , Análisis de la Célula Individual , Transducción de Señal , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Ratones Endogámicos C57BLRESUMEN
Natural killer (NK) cells are innate lymphoid cells (ILCs) contributing to immune responses to microbes and tumors. Historically, their classification hinged on a limited array of surface protein markers. Here, we used single-cell RNA sequencing (scRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to dissect the heterogeneity of NK cells. We identified three prominent NK cell subsets in healthy human blood: NK1, NK2 and NK3, further differentiated into six distinct subgroups. Our findings delineate the molecular characteristics, key transcription factors, biological functions, metabolic traits and cytokine responses of each subgroup. These data also suggest two separate ontogenetic origins for NK cells, leading to divergent transcriptional trajectories. Furthermore, we analyzed the distribution of NK cell subsets in the lung, tonsils and intraepithelial lymphocytes isolated from healthy individuals and in 22 tumor types. This standardized terminology aims at fostering clarity and consistency in future research, thereby improving cross-study comparisons.
Asunto(s)
Células Asesinas Naturales , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Asesinas Naturales/inmunología , Transcriptoma , Neoplasias/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Tonsila Palatina/inmunología , Tonsila Palatina/citología , Perfilación de la Expresión Génica , Pulmón/inmunología , Citocinas/metabolismoRESUMEN
IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.
Asunto(s)
Inmunidad Innata , Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animales , Interleucina-33/inmunología , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/inmunología , Interleucinas/genética , Ratones , Streptococcus pneumoniae/inmunología , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/inmunología , Humanos , Ratones Noqueados , Microbiota/inmunología , Ratones Endogámicos C57BL , Neumonía Neumocócica/inmunología , Neumonía Neumocócica/microbiología , Microbioma Gastrointestinal/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Polimorfismo de Nucleótido SimpleRESUMEN
The commensal microflora provides a repertoire of antigens that illicit mucosal antibodies. In some cases, these antibodies can cross-react with host proteins, inducing autoimmunity, or with other microbial antigens. We demonstrate that the oral microbiota can induce salivary anti-SARS-CoV-2 Spike IgG antibodies via molecular mimicry. Anti-Spike IgG antibodies in the saliva correlated with enhanced abundance of Streptococcus salivarius 1 month after anti-SARS-CoV-2 vaccination. Several human commensal bacteria, including S. salivarius, were recognized by SARS-CoV-2-neutralizing monoclonal antibodies and induced cross-reactive anti-Spike antibodies in mice, facilitating SARS-CoV-2 clearance. A specific S. salivarius protein, RSSL-01370, contains regions with homology to the Spike receptor-binding domain, and immunization of mice with RSSL-01370 elicited anti-Spike IgG antibodies in the serum. Additionally, oral S. salivarius supplementation enhanced salivary anti-Spike antibodies in vaccinated individuals. Altogether, these data show that distinct species of the human microbiota can express molecular mimics of SARS-CoV-2 Spike protein, potentially enhancing protective immunity.
Asunto(s)
COVID-19 , Microbiota , Humanos , Animales , Ratones , Glicoproteína de la Espiga del Coronavirus , Formación de Anticuerpos , Imitación Molecular , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Antivirales , Inmunoglobulina A Secretora , Inmunoglobulina G , Anticuerpos NeutralizantesRESUMEN
Natural killer (NK) cells and type 1 innate lymphoid cells (ILC1) require signal transducer and activator of transcription 4 (STAT4) to elicit rapid effector responses and protect against pathogens. By combining genetic and transcriptomic approaches, we uncovered divergent roles for STAT4 in regulating effector differentiation of these functionally related cell types. Stat4 deletion in Ncr1-expressing cells led to impaired NK cell terminal differentiation as well as to an unexpected increased generation of cytotoxic ILC1 during intestinal inflammation. Mechanistically, Stat4-deficient ILC1 exhibited upregulation of gene modules regulated by STAT5 in vivo and an aberrant effector differentiation upon in vitro stimulation with IL-2, used as a prototypical STAT5 activator. Moreover, STAT4 expression in NCR+ innate lymphocytes restrained gut inflammation in the dextran sulfate sodium-induced colitis model limiting pathogenic production of IL-13 from adaptive CD4+ T cells in the large intestine. Collectively, our data shed light on shared and distinctive mechanisms of STAT4-regulated transcriptional control in NK cells and ILC1 required for intestinal inflammatory responses.
Asunto(s)
Antineoplásicos , Factor de Transcripción STAT5 , Humanos , Inmunidad Innata , Diferenciación Celular , Células Asesinas Naturales , Inflamación , Factor de Transcripción STAT4/genéticaRESUMEN
It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets.
Asunto(s)
Inmunidad Innata , Linfocitos , Ratones , Animales , Linfocitos/metabolismo , Regeneración Hepática , Interleucinas/metabolismo , Piel/metabolismoRESUMEN
Keratinocytes (KCs) form the outer epithelial barrier of the body, protecting against invading pathogens. Mice lacking the IL-17RA or both IL-17A and IL-17F develop spontaneous Staphylococcusaureus skin infections. We found a marked expansion of T17 cells, comprised of RORγt-expressing γδ T cells and T helper 17 cells in the skin-draining lymph nodes of these mice. Contradictory to previous suggestions, this expansion was not a result of a direct negative feedback loop because we found no expansion of T17 cells in mice lacking IL-17 signaling specifically in T cells. Instead, we found that the T17 expansion depended on the microbiota and was observed only when KCs were deficient for IL-17RA signaling. Indeed, mice that lack IL-17RA only in KCs showed an increased susceptibility to experimental epicutaneous infection with S. aureus together with an accumulation of IL-17A-producing γδ T cells. We conclude that deficiency of IL-17RA on KCs leads to microbiota dysbiosis in the skin, which triggers the expansion of IL-17A-producing T cells. Our data show that KCs are the primary target cells of IL-17A and IL-17F, coordinating the defense against microbial invaders in the skin.
Asunto(s)
Interleucina-17 , Staphylococcus aureus , Ratones , Animales , Ratones Noqueados , Piel , Queratinocitos , Ratones Endogámicos C57BLRESUMEN
Innate effector cells are immune cells endowed with host protective features and cytotoxic functions. By sensing the tissue environment, innate cells have an important role in regulating the transition from homeostasis to inflammation and the establishment of pathological states, including the onset and development of cancer. The tumor microenvironment induces molecular and functional modifications in innate cells, dampening their capability to initiate and sustain anti-tumor immune responses. Emerging studies clearly showed a contribution of the microbiota in modulating the functions of innate cells in cancer. Commensal microorganisms can not only directly interact with innate cells in the tumor microenvironment but can also exert immunomodulatory features from non-tumor sites through the release of microbial products. The microbiota can mediate the priming of innate cells at mucosal tissues and determine the strength of immune responses mediated by such cells when they migrate to non-mucosal tissues, having an impact on cancer. Finally, several evidences reported a strong contribution of the microbiota in promoting innate immune responses during anti-cancer therapies leading to enhanced therapeutic efficacy. In this review, we considered the current knowledge on the role of the microbiota in shaping host innate immune responses in cancer.
Asunto(s)
Sistema Inmunológico , Inmunidad Innata , Inmunoterapia , Microbiota , Neoplasias , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Inmunidad Innata/inmunología , Microbiota/inmunología , Neoplasias/inmunología , Neoplasias/microbiología , Neoplasias/terapia , Microambiente Tumoral , Homeostasis , AnimalesRESUMEN
Protective immunity relies on the interplay of innate and adaptive immune cells with complementary and redundant functions. Innate lymphoid cells (ILCs) have recently emerged as tissue-resident, innate mirror images of the T cell system, with which they share lineage-specifying transcription factors and effector machinery1. Located at barrier surfaces, ILCs are among the first responders against invading pathogens and thus could potentially determine the outcome of the immune response2. However, so far it has not been possible to dissect the unique contributions of ILCs to protective immunity owing to limitations in specific targeting of ILC subsets. Thus, all of the available data have been generated either in mice lacking the adaptive immune system or with tools that also affect other immune cell subsets. In addition, it has been proposed that ILCs might be dispensable for a proper immune response because other immune cells could compensate for their absence3-7. Here we report the generation of a mouse model based on the neuromedin U receptor 1 (Nmur1) promoter as a driver for simultaneous expression of Cre recombinase and green fluorescent protein, which enables gene targeting in group 2 ILCs (ILC2s) without affecting other innate and adaptive immune cells. Using Cre-mediated gene deletion of Id2 and Gata3 in Nmur1-expressing cells, we generated mice with a selective and specific deficiency in ILC2s. ILC2-deficient mice have decreased eosinophil counts at steady state and are unable to recruit eosinophils to the airways in models of allergic asthma. Further, ILC2-deficient mice do not mount an appropriate immune and epithelial type 2 response, resulting in a profound defect in worm expulsion and a non-protective type 3 immune response. In total, our data establish non-redundant functions for ILC2s in the presence of adaptive immune cells at steady state and during disease and argue for a multilayered organization of the immune system on the basis of a spatiotemporal division of labour.
Asunto(s)
Sistema Inmunológico , Inmunidad Innata , Linfocitos , Animales , Ratones , Asma/genética , Asma/inmunología , Asma/patología , Modelos Animales de Enfermedad , Eosinófilos/patología , Inmunidad Innata/inmunología , Linfocitos/clasificación , Linfocitos/inmunología , Proteínas Fluorescentes Verdes , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/patologíaRESUMEN
Background: Peanut allergy is a frequent cause of food allergy and potentially life-threatening. Within this interdisciplinary research approach, we aim to unravel the complex mechanisms of peanut allergy. As a first step were applied in an exploratory manner the analysis of peanut allergic versus non-allergic controls. Methods: Biosamples were studied regarding DNA methylation signatures, gut microbiome, adaptive and innate immune cell populations, soluble signaling molecules and allergen-reactive antibody specificities. We applied a scalable systems medicine computational workflow to the assembled data. Results: We identified combined cellular and soluble biomarker signatures that stratify donors into peanut-allergic and non-allergic with high specificity. DNA methylation profiling revealed various genes of interest and stool microbiota differences in bacteria abundances. Conclusion: By extending our findings to a larger set of patients (e.g., children vs. adults), we will establish predictors for food allergy and tolerance and translate these as for example, indicators for interventional studies.
RESUMEN
Cerebral infections are restrained by a complex interplay of tissue-resident and recruited peripheral immune cells. Whether innate lymphoid cells (ILCs) are involved in the orchestration of the neuroinflammatory dynamics is not fully understood. Here, we demonstrate that ILCs accumulate in the cerebral parenchyma, the choroid plexus, and the meninges in the onset of cerebral Toxoplasma gondii infection. Antibody-mediated depletion of conventional natural killer (cNK) cells and ILC1s in the early stage of infection results in diminished cytokine and chemokine expression and increased cerebral parasite burden. Using cNK- and ILC1-deficient murine models, we demonstrate that exclusively the lack of ILC1s affects cerebral immune responses. In summary, our results provide evidence that ILC1s are an early source of IFN-γ and TNF in response to cerebral T. gondii infection, thereby inducing host defense factors and initiating the development of a neuroinflammatory response.
Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Inmunidad Innata , Células Asesinas Naturales , Ratones , Enfermedades NeuroinflamatoriasRESUMEN
AIMS: The mammalian gut is the largest endocrine organ. Dozens of hormones secreted by enteroendocrine cells regulate a variety of physiological functions of the gut but also of the pancreas and brain. Here, we examined the role of the helix-loop-helix transcription factor ID2 during the differentiation of intestinal stem cells along the enteroendocrine lineage. METHODS: To assess the functions of ID2 in the adult mouse small intestine, we used single-cell RNA sequencing, genetically modified mice, and organoid assays. RESULTS: We found that in the adult intestinal epithelium Id2 is predominantly expressed in enterochromaffin and peptidergic enteroendocrine cells. Consistently, the loss of Id2 leads to the reduction of Chromogranin A-positive enteroendocrine cells. In contrast, the numbers of tuft cells are increased in Id2 mutant small intestine. Moreover, ablation of Id2 elevates the numbers of Serotonin+ enterochromaffin cells and Ghrelin+ X-cells in the posterior part of the small intestine. Finally, ID2 acts downstream of BMP signalling during the differentiation of Glucagon-like peptide-1+ L-cells and Cholecystokinin+ I-cells towards Neurotensin+ PYY+ N-cells. CONCLUSION: ID2 plays an important role in cell fate decisions in the adult small intestine. First, ID2 is essential for establishing a differentiation gradient for enterochromaffin and X-cells along the anterior-posterior axis of the gut. Next, ID2 is necessary for the differentiation of N-cells thus ensuring a differentiation gradient along the crypt-villi axis. Finally, ID2 suppresses the commitment of secretory intestinal epithelial progenitors towards tuft cell lineage and thus controls host immune response to commensal and parasitic microbiota.
Asunto(s)
Diferenciación Celular , Células Enteroendocrinas , Proteína 2 Inhibidora de la Diferenciación/genética , Factores de Transcripción , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Mucosa Intestinal , Intestino Delgado/citología , Mamíferos , Ratones , Factores de Transcripción/genéticaRESUMEN
Pro-inflammatory T cells in the central nervous system (CNS) are causally associated with multiple demyelinating and neurodegenerative diseases1-6, but the pathways that control these responses remain unclear. Here we define a population of inflammatory group 3 innate lymphoid cells (ILC3s) that infiltrate the CNS in a mouse model of multiple sclerosis. These ILC3s are derived from the circulation, localize in proximity to infiltrating T cells in the CNS, function as antigen-presenting cells that restimulate myelin-specific T cells, and are increased in individuals with multiple sclerosis. Notably, antigen presentation by inflammatory ILC3s is required to promote T cell responses in the CNS and the development of multiple-sclerosis-like disease in mouse models. By contrast, conventional and tissue-resident ILC3s in the periphery do not appear to contribute to disease induction, but instead limit autoimmune T cell responses and prevent multiple-sclerosis-like disease when experimentally targeted to present myelin antigen. Collectively, our data define a population of inflammatory ILC3s that is essential for directly promoting T-cell-dependent neuroinflammation in the CNS and reveal the potential of harnessing peripheral tissue-resident ILC3s for the prevention of autoimmune disease.
Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Células Presentadoras de Antígenos , Antígenos/metabolismo , Inmunidad Innata , Linfocitos , Ratones , Enfermedades Neuroinflamatorias , Esclerosis/metabolismoRESUMEN
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Asunto(s)
Enfermedades Autoinmunes/inmunología , Citometría de Flujo , Infecciones/inmunología , Neoplasias/inmunología , Animales , Enfermedad Crónica , Humanos , Ratones , Guías de Práctica Clínica como AsuntoRESUMEN
SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.
Asunto(s)
COVID-19/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Factor de Crecimiento Transformador beta/inmunología , Atlas como Asunto , Regulación de la Expresión Génica/inmunología , Humanos , Inmunidad Innata , Gripe Humana/inmunología , Células Asesinas Naturales/patología , RNA-Seq , Análisis de la Célula Individual , Factores de Tiempo , Factor de Crecimiento Transformador beta/sangre , Carga Viral/inmunología , Replicación Viral/inmunologíaRESUMEN
Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.
Asunto(s)
Hígado/citología , Hígado/inmunología , Subgrupos Linfocitarios/citología , Linfocitos/citología , Animales , Antígenos CD/metabolismo , Proteínas Ligadas a GPI/metabolismo , Granzimas/metabolismo , Inmunidad Innata/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones , Receptores Inmunológicos/metabolismoRESUMEN
The commensal microbiota regulates susceptibility to enteric pathogens by fine-tuning mucosal innate immune responses, but how susceptibility to enteric viruses is shaped by the microbiota remains incompletely understood. Past reports have indicated that commensal bacteria may either promote or repress rotavirus replication in the small intestine of mice. We now report that rotavirus replicated more efficiently in the intestines of germ-free and antibiotic-treated mice compared to animals with an unmodified microbiota. Antibiotic treatment also facilitated rotavirus replication in type I and type III interferon (IFN) receptor-deficient mice, revealing IFN-independent proviral effects. Expression of interleukin-22 (IL-22) was strongly diminished in the intestine of antibiotic-treated mice. Treatment with exogenous IL-22 blocked rotavirus replication in microbiota-depleted wild-type and Stat1-/- mice, demonstrating that the antiviral effect of IL-22 in animals with altered microbiome is not dependent on IFN signaling. In antibiotic-treated animals, IL-22-induced a specific set of genes including Fut2, encoding fucosyl-transferase 2 that participates in the biosynthesis of fucosylated glycans which can mediate rotavirus binding. Interestingly, IL-22 also blocked rotavirus replication in antibiotic-treated Fut2-/- mice. Furthermore, IL-22 inhibited rotavirus replication in antibiotic-treated mice lacking key molecules of the necroptosis or pyroptosis pathways of programmed cell death. Taken together, our results demonstrate that IL-22 determines rotavirus susceptibility of antibiotic-treated mice, yet the IL-22-induced effector molecules conferring rotavirus resistance remain elusive.
Asunto(s)
Antibacterianos/efectos adversos , Interleucinas/metabolismo , Infecciones por Rotavirus/etiología , Animales , Antibacterianos/farmacología , Susceptibilidad a Enfermedades , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Perfilación de la Expresión Génica , Interleucinas/fisiología , Mucosa Intestinal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Rotavirus/fisiología , Interleucina-22RESUMEN
Novel mRNA-based vaccines have been proven to be powerful tools in combating the global pandemic caused by SARS-CoV-2, with BNT162b2 (trade name: Comirnaty) efficiently protecting individuals from COVID-19 across a broad age range. Still, it remains largely unknown how renal insufficiency and immunosuppressive medication affect development of vaccine-induced immunity. We therefore comprehensively analyzed humoral and cellular responses in kidney transplant recipients after the standard second vaccination dose. As opposed to all healthy vaccinees and the majority of hemodialysis patients, only 4 of 39 and 1 of 39 transplanted individuals showed IgA and IgG seroconversion at day 8 ± 1 after booster immunization, with minor changes until day 23 ± 5, respectively. Although most transplanted patients mounted spike-specific T helper cell responses, frequencies were significantly reduced compared with those in controls and dialysis patients and this was accompanied by a broad impairment in effector cytokine production, memory differentiation, and activation-related signatures. Spike-specific CD8+ T cell responses were less abundant than their CD4+ counterparts in healthy controls and hemodialysis patients and almost undetectable in transplant patients. Promotion of anti-HLA antibodies or acute rejection was not detected after vaccination. In summary, our data strongly suggest revised vaccination approaches in immunosuppressed patients, including individual immune monitoring for protection of this vulnerable group at risk of developing severe COVID-19.