Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(25): e202319456, 2024 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-38626385

RESUMEN

Dynamic combinatorial chemistry (DCC) leverages a reversible reaction to generate compound libraries from constituting building blocks under thermodynamic control. The position of this equilibrium can be biased by addition of a target macromolecule towards enrichment of bound ligands. While DCC has been applied to select ligands for a single target protein, its application to identifying chimeric molecules inducing proximity between two proteins is unprecedented. In this proof-of-concept study, we develop a DCC approach to select bifunctional proteolysis targeting chimeras (PROTACs) based on their ability to stabilize the ternary complex. We focus on VHL-targeting Homo-PROTACs as model system, and show that the formation of a VHL2 : Homo-PROTAC ternary complex reversibly assembled using thiol-disulfide exchange chemistry leads to amplification of potent VHL Homo-PROTACs with degradation activities which correlated well with their biophysical ability to dimerize VHL. Ternary complex templated dynamic combinatorial libraries allowed identification of novel Homo-PROTAC degraders. We anticipate future applications of ternary-complex directed DCC to early PROTAC screenings and expansion to other proximity-inducing modalities beyond PROTACs.


Asunto(s)
Técnicas Químicas Combinatorias , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteolisis , Ligandos , Termodinámica , Quimera Dirigida a la Proteólisis
2.
J Med Chem ; 66(18): 12776-12811, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37708384

RESUMEN

Hypoxia-inducible factor-1α (HIF-1α) constitutes the principal mediator of cellular adaptation to hypoxia in humans. The HIF-1α protein level and activity are tightly regulated by the ubiquitin E3 ligase von Hippel-Lindau (VHL). Here, we performed a structure-guided and bioactivity-driven design of new VHL inhibitors. Our iterative and combinatorial strategy focused on chemical variability at the phenylene unit and encompassed further points of diversity. The exploitation of tailored phenylene fragments and the stereoselective installation of the benzylic methyl group provided potent VHL ligands. Three high-resolution structures of VHL-ligand complexes were determined, and bioactive conformations of these ligands were explored. The most potent inhibitor (30) exhibited dissociation constants lower than 40 nM, independently determined by fluorescence polarization and surface plasmon resonance and an enhanced cellular potency, as evidenced by its superior ability to induce HIF-1α transcriptional activity. Our work is anticipated to inspire future efforts toward HIF-1α stabilizers and new ligands for proteolysis-targeting chimera (PROTAC) degraders.


Asunto(s)
Ubiquitina-Proteína Ligasas , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , Ligandos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ubiquitina/metabolismo , Hipoxia
3.
Chem Soc Rev ; 51(19): 8216-8257, 2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-35983982

RESUMEN

The von Hippel-Lindau (VHL) Cullin RING E3 ligase is an essential enzyme in the ubiquitin-proteasome system that recruits substrates such as the hypoxia inducible factor for ubiquitination and subsequent proteasomal degradation. The ubiquitin-proteasome pathway can be hijacked toward non-native neo-substrate proteins using proteolysis targeting chimeras (PROTACs), bifunctional molecules designed to simultaneously bind to an E3 ligase and a target protein to induce target ubiquitination and degradation. The availability of high-quality small-molecule ligands with good binding affinity for E3 ligases is fundamental for PROTAC development. Lack of good E3 ligase ligands as starting points to develop PROTAC degraders was initially a stumbling block to the development of the field. Herein, the journey towards the design of small-molecule ligands binding to VHL is presented. We cover the structure-based design of VHL ligands, their application as inhibitors in their own right, and their implementation into rationally designed, potent PROTAC degraders of various target proteins. We highlight the key findings and learnings that have provided strong foundations for the remarkable development of targeted protein degradation, and that offer a blueprint for designing new ligands for E3 ligases beyond VHL.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau , Proteínas Cullin , Ligandos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/química , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
4.
Angew Chem Int Ed Engl ; 58(1): 211-215, 2019 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-30381881

RESUMEN

While there is a growing interest in harnessing synergistic effects of more than one metal in catalysis, relatively little is known beyond bimetallic systems. This report describes the straightforward access to an air-stable Pd trimer and presents unambiguous reactivity data of its privileged capability to differentiate C-I over C-Br bonds in C-C bond formations (arylation and alkylation) of polyhalogenated arenes, which typical Pd0 and PdI -PdI catalysts fail to deliver. Experimental and computational reactivity data, including the first location of a transition state for bond activation by the trimer, are presented, supporting direct trimer reactivity to be feasible.

5.
Angew Chem Int Ed Engl ; 54(34): 9996-9, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26130570

RESUMEN

The combined carbometalation/zinc homologation followed by reactions with α-heterosubstituted aldehydes and imines proceed through a chair-like transition structure with the substituent of the incoming aldehyde residue preferentially occupying a pseudo-axial position to avoid the two gauche interactions. The heteroatom in the axial position produces a chelated intermediate (and not a Cornforth-Evans transition structure for α-chloro aldehydes and imines) leading to a face differentiation in the allylation reaction. This method provides access to functionalized products in which three new carbon-carbon bonds and two to three stereogenic centers, including a quaternary one, were created in acyclic systems in a single-pot operation from simple alkynes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA