Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biol Invasions ; 25(5): 1441-1459, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36570095

RESUMEN

The construction of the Suez Canal connected the Red Sea and the Mediterranean Sea, which allowed rapid marine bio-invasion. Over the last century, several bivalve species have invaded the Levantine basin, yet their distribution and impact on the benthic community have not been thoroughly studied. Large-scale benthic surveys along the rocky substrate of the Israeli Mediterranean coastline indicate that invading bivalves, such as Spondylus spinosus, Brachidontes pharaonis, and Pinctada radiata, now dominate the rocky environment, with densities of tens to hundreds of individuals per m2. No native bivalve specimens were found in any of the transects surveyed. The small-scale ecological effects of the established invading populations on the benthic community were examined over a year using an in-situ exclusion experiment where all invading bivalves were either physically removed or poisoned and kept in place to maintain the physical effect of the shells. Surprisingly, the experimental exclusion showed a little measurable effect of bivalve presence on the invertebrate community in close vicinity (~ 1 m). Bivalve presence had a small, but statistically significant, effect only on the community composition of macroalgae, increasing the abundance of some filamentous macroalgae and reducing the cover of turf. The generally low impact of bivalves removal could be due to (1) wave activity and local currents dispersing the bivalve excreta, (2) high grazing pressure, possibly by invading herbivorous fish, reducing the bottom-up effect of increased nutrient input by the bivalves, or (3) the natural complexity of the rocky habitat masking the contribution of the increased complexity associated with the bivalve's shell. We found that established invading bivalves have replaced native bivalve species, yet their exclusion has a negligible small-scale effect on the local benthic community. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-022-02986-1.

2.
Microb Biotechnol ; 13(3): 770-780, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32059079

RESUMEN

This study is an initial description and discussion of the kidney and liver microbial communities of five common fish species sampled from four sites along the Eastern Mediterranean Sea shoreline. The goals of the present study were to establish a baseline dataset of microbial communities associated with the tissues of wild marine fish, in order to examine species-specific microbial characteristics and to screen for candidate pathogens. This issue is especially relevant due to the development of mariculture farms and the possible transmission of pathogens from wild to farmed fish and vice versa. Although fish were apparently healthy, 16S rRNA NGS screening identified three potential fish bacterial pathogens: Photobacterium damselae, Vibrio harveyi and Streptococcus iniae. Based on the distribution patterns and relative abundance, 16 samples were classified as potential pathogenic bacteria-infected samples (PPBIS). Hence, PPBIS prevalence was significantly higher in kidneys than in liver samples and variation was found between the fish species. Significant differences were observed between fish species, organs and sites, indicating the importance of the environmental conditions on the fish microbiome. We applied a consistent sampling and analytical method for monitoring in long-term surveys which may be incorporated within other marine fish pathogens surveys around the world.


Asunto(s)
Acuicultura , Bacterias , Infecciones Bacterianas , Enfermedades de los Peces , Microbiota , Animales , Bacterias/genética , Bacterias/aislamiento & purificación , Infecciones Bacterianas/microbiología , Infecciones Bacterianas/veterinaria , Carga Bacteriana , Enfermedades de los Peces/microbiología , Riñón/microbiología , Hígado/microbiología , Mar Mediterráneo , Microbiota/fisiología , Photobacterium/fisiología , ARN Ribosómico 16S/genética , Streptococcus iniae/fisiología , Vibrio/fisiología
3.
Dis Aquat Organ ; 133(1): 7-17, 2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30997880

RESUMEN

Infectious diseases in marine animals have ecological, socio-economic and environmental impacts. Nervous necrosis virus (NNV) and Streptococcus iniae have become major threats to marine aquaculture and have been detected in morbid marine organisms worldwide. However, despite their importance, there is a lack of knowledge regarding the prevalence of these pathogens in wild fish species. Here we sampled indigenous and Lessepsian species from different trophic levels and different biological niches in the eastern Mediterranean. A total of 174 fish and 32 crustaceans were tested for S. iniae and a total of 195 fish and 33 crustaceans were tested for NNV. We found an overall prevalence of 9.71% Streptococcus spp. and 21.49% NNV in selected marine fish and crustaceans by PCR and qPCR. In fish, the zoonotic agent S. iniae was detected at a higher prevalence in kidney compared to liver tissue. Co-infection by both pathogens was detected only in 5 specimens. We also examined gilthead sea bream Sparus aurata from an Israeli offshore marine farm during the grow-out period, in order to assess the possibility of horizontal pathogen transmission from wild to maricultured fish. Three out of 15 (20%) fish were found to be NNV positive after 120 d in the sea, suggesting spontaneous transmission from wild to farmed fish. Our findings suggest that more surveys should be conducted, especially in areas were mariculture farms are planned to be established.


Asunto(s)
Enfermedades de los Peces , Dorada , Infecciones Estreptocócicas/veterinaria , Animales , Acuicultura , Mar Mediterráneo , Prevalencia , Infecciones Estreptocócicas/epidemiología , Streptococcus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA