Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2650: 17-34, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37310620

RESUMEN

Immunofluorescence imaging enables visualization of a wide range of molecules in diverse cells and tissues. Determining the localization and endogenous protein levels in cells using immunostaining can be highly informative for researchers studying cell structure and function. The small intestinal epithelium is composed of numerous cell types including absorptive enterocytes, mucus-producing goblet cells, lysozyme positive Paneth cells, proliferative stem cells, chemosensing tuft cells, and hormone-producing enteroendocrine cells. Each cell type in the small intestine has unique functions and structures that are critical for maintaining intestinal homeostasis and identifiable by immunofluorescence labeling. In this chapter we provide a detailed protocol and representative images of immunostaining of paraffin-embedded mouse small intestinal tissue. The method highlights antibodies and micrographs that identify differentiated cell types. These details are important because quality immunofluorescence imaging can provide novel insights and a greater understanding of healthy and disease states.


Asunto(s)
Células Epiteliales , Intestinos , Animales , Ratones , Diferenciación Celular , Células Enteroendocrinas , Microscopía Fluorescente
2.
Am J Physiol Gastrointest Liver Physiol ; 323(5): G501-G510, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36218265

RESUMEN

Intestinal enterocytes have an elaborate apical membrane of actin-rich protrusions known as microvilli. The organization of microvilli is orchestrated by the intermicrovillar adhesion complex (IMAC), which connects the distal tips of adjacent microvilli. The IMAC is composed of CDHR2 and CDHR5 as well as the scaffolding proteins USH1C, ANKS4B, and Myosin 7b (MYO7B). To create an IMAC, cells must transport the proteins to the apical membrane. Myosin 5b (MYO5B) is a molecular motor that traffics ion transporters to the apical membrane of enterocytes, and we hypothesized that MYO5B may also be responsible for the localization of IMAC proteins. To address this question, we used two different mouse models: 1) neonatal germline MYO5B knockout (MYO5B KO) mice and 2) adult intestinal-specific tamoxifen-inducible VillinCreERT2;MYO5Bflox/flox mice. In control mice, immunostaining revealed that CDHR2, CDHR5, USH1C, and MYO7B were highly enriched at the tips of the microvilli. In contrast, neonatal germline and adult MYO5B-deficient mice showed loss of apical CDHR2, CDHR5, and MYO7B in the brush border and accumulation in a subapical compartment. Colocalization analysis revealed decreased Mander's coefficients in adult inducible MYO5B-deficient mice compared with control mice for CDHR2, CDHR5, USH1C, and MYO7B. Scanning electron microscopy images further demonstrated aberrant microvilli packing in adult inducible MYO5B-deficient mouse small intestine. These data indicate that MYO5B is responsible for the delivery of IMAC components to the apical membrane.NEW & NOTEWORTHY The intestinal epithelium absorbs nutrients and water through an elaborate apical membrane of highly organized microvilli. Microvilli organization is regulated by the intermicrovillar adhesion complexes, which create links between neighboring microvilli and control microvilli packing and density. In this study, we report a new trafficking partner of the IMAC, Myosin 5b. Loss of Myosin 5b results in a disorganized brush border and failure of IMAC proteins to reach the distal tips of microvilli.


Asunto(s)
Enterocitos , Microvellosidades , Miosina Tipo V , Animales , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Enterocitos/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Microvellosidades/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA