Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Adv Mater ; : e2404784, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38958110

RESUMEN

Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer and the third leading cause for cancer-related death worldwide. The tumor is difficult-to-treat due to its inherent resistance to chemotherapy. Antistromal therapy is a novel therapeutic approach, targeting cancer-associated fibroblasts (CAF) in the tumor microenvironment. CAF-derived microfibrillar-associated protein 5 (MFAP-5) is identified as a novel target for antistromal therapy of HCC with high translational relevance. Biocompatible polypept(o)ide-based polyion complex micelles (PICMs) constructed with a triblock copolymer composed of a cationic poly(l-lysine) complexing anti-MFAP-5 siRNA (siMFAP-5) via electrostatic interaction, a poly(γ-benzyl-l-glutamate) block loading cationic amphiphilic drug desloratatine (DES) via π-π interaction as endosomal escape enhancer and polysarcosine poly(N-methylglycine) for introducing stealth properties, are generated for siRNA delivery. Intravenous injection of siMFAP-5/DES PICMs significantly reduces the hepatic tumor burden in a syngeneic implantation model of HCC, with a superior MFAP-5 knockdown effect over siMFAP-5 PICMs or lipid nanoparticles. Transcriptome and histological analysis reveal that MFAP-5 knockdown inhibited CAF-related tumor vascularization, suggesting the anti-angiogenic effect of RNA interference therapy. In conclusion, multicompartment PICMs combining siMFAP-5 and DES in a single polypept(o)ide micelle induce a specific knockdown of MFAP-5 and demonstrate a potent antitumor efficacy (80% reduced tumor burden vs untreated control) in a clinically relevant HCC model.

2.
Front Immunol ; 15: 1394003, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38868767

RESUMEN

Cancer immunotherapy has witnessed rapid advancement in recent years, with a particular focus on neoantigens as promising targets for personalized treatments. The convergence of immunogenomics, bioinformatics, and artificial intelligence (AI) has propelled the development of innovative neoantigen discovery tools and pipelines. These tools have revolutionized our ability to identify tumor-specific antigens, providing the foundation for precision cancer immunotherapy. AI-driven algorithms can process extensive amounts of data, identify patterns, and make predictions that were once challenging to achieve. However, the integration of AI comes with its own set of challenges, leaving space for further research. With particular focus on the computational approaches, in this article we have explored the current landscape of neoantigen prediction, the fundamental concepts behind, the challenges and their potential solutions providing a comprehensive overview of this rapidly evolving field.


Asunto(s)
Antígenos de Neoplasias , Inteligencia Artificial , Inmunoterapia , Neoplasias , Medicina de Precisión , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Medicina de Precisión/métodos , Antígenos de Neoplasias/inmunología , Inmunoterapia/métodos , Biología Computacional/métodos , Animales
3.
Adv Healthc Mater ; : e2401252, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889433

RESUMEN

Lipid nanoparticle (LNP) remains the most advanced platform for messenger RNA (mRNA) delivery. To date, mRNA LNPs synthesis is mostly performed by mixing lipids and mRNA with microfluidics. In this study, a cost-effective microfluidic setup for synthesizing mRNA LNPs is developed. It allows to fine-tune the LNPs characteristics without compromising LNP properties. It is compared with a commercial device (NanoAssemblr) and ethanol injection and the influence of manufacturing conditions on the performance of mRNA LNPs is investigated. LNPs prepared by ethanol injection exhibit broader size distributions and more inhomogeneous internal structure (e.g., bleb-like substructures), while other LNPs show uniform structure with dense cores. Small angel X-ray scattering (SAXS) data indicate a tighter interaction between mRNA and lipids within LNPs synthesized by custom device, compared to LNPs produced by NanoAssemblr. Interestingly, the better transfection efficiency of polysarcosine (pSar)-modified LNPs correlates with a higher surface roughness than that of PEGylated ones. The manufacturing approach, however, shows modest influence on mRNA expression in vivo. In summary, the home-developed cost-effective microfluidic device can synthesize LNPs and represents a potent alternative to NanoAssemblr. The preparation methods show notable effect on LNPs' structure but a minor influence on mRNA delivery in vitro and in vivo.

4.
Cancer Immunol Res ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38885358

RESUMEN

Interleukin-2 (IL-2) is a crucial cytokine in T-cell immunity and a promising combination partner to boost cancer vaccine efficacy. However, therapeutic application of IL-2 is hampered by its short half-life and substantial toxicities. Herein, we report preclinical characterization of a mouse serum albumin-IL-2 fusion protein (Alb-IL2) encoded on nucleoside-modified RNA delivered via a nanoparticle formulation (Alb-IL2 RNA-NP) mediating prolonged cytokine availability. Alb-IL2 RNA-NP was combined with RNA-lipoplex (RNA-LPX) vaccines to evaluate its effect on the expansion of vaccine-induced antigen-specific T-cell immunity. In mice dosed with Alb-IL2 RNA-NP, translated protein was shown to be systemically available up to two days, with an albumin-dependent preferred presence in the tumor and tumor-draining lymph node. Alb-IL2 RNA-NP administration prolonged serum availability of the cytokine compared to murine recombinant IL-2 (rIL-2). In combination with RNA-LPX vaccines, Alb-IL2 RNA-NP administration highly increased expansion of RNA-LPX vaccine-induced CD8+ T cells in the spleen and blood. The combination enhanced and sustained the fraction of IL-2 receptor (IL-2R)α-positive antigen-specific CD8+ T cells and ameliorated the functional capacity of the CD8+ T-cell population. Alb-IL2 RNA-NP strongly improved the antitumor activity and survival of concomitant RNA-LPX vaccination and PD-L1 blockade in a subcutaneous mouse tumor model. The favorable pharmacokinetic properties of Alb-IL2 RNA-NP render it an attractive modality for rationally designed combination immunotherapy. RNA vaccines that induce tumor-specific T-cell immunity for Alb-IL2 RNA-NP to further amplify are particularly attractive combination partners.

5.
Cancer Cell ; 42(4): 568-582.e11, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38490213

RESUMEN

Major histocompatibility complex (MHC) class I antigen presentation deficiency is a common cancer immune escape mechanism, but the mechanistic implications and potential strategies to address this challenge remain poorly understood. Studying ß2-microglobulin (B2M) deficient mouse tumor models, we find that MHC class I loss leads to a substantial immune desertification of the tumor microenvironment (TME) and broad resistance to immune-, chemo-, and radiotherapy. We show that treatment with long-lasting mRNA-encoded interleukin-2 (IL-2) restores an immune cell infiltrated, IFNγ-promoted, highly proinflammatory TME signature, and when combined with a tumor-targeting monoclonal antibody (mAB), can overcome therapeutic resistance. Unexpectedly, the effectiveness of this treatment is driven by IFNγ-releasing CD8+ T cells that recognize neoantigens cross-presented by TME-resident activated macrophages. These macrophages acquire augmented antigen presentation proficiency and other M1-phenotype-associated features under IL-2 treatment. Our findings highlight the importance of restoring neoantigen-specific immune responses in the treatment of cancers with MHC class I deficiencies.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Ratones , Antígenos de Histocompatibilidad Clase I/genética , Interleucina-2/genética , Interleucina-2/inmunología , Neoplasias/genética , ARN Mensajero , Microambiente Tumoral
6.
Int J Radiat Oncol Biol Phys ; 119(3): 936-945, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163521

RESUMEN

PURPOSE: Personalized liposome-formulated mRNA vaccines (RNA-LPX) are a powerful new tool in cancer immunotherapy. In preclinical tumor models, RNA-LPX vaccines are known to achieve potent results when combined with conventional X-ray radiation therapy (XRT). Densely ionizing radiation used in carbon ion radiation therapy (CIRT) may induce distinct effects in combination with immunotherapy compared with sparsely ionizing X-rays. METHODS AND MATERIALS: Within this study, we investigate the potential of CIRT and isoeffective doses of XRT to mediate tumor growth inhibition and survival in murine colon adenocarcinoma models in conjunction with neoantigen (neoAg)-specific RNA-LPX vaccines encoding both major histocompatibility complex (MHC) class I- and class II-restricted tumor-specific neoantigens. We characterize tumor immune infiltrates and antigen-specific T cell responses by flow cytometry and interferon-γ enzyme-linked immunosorbent spot (ELISpot) analyses, respectively. RESULTS: NeoAg RNA-LPX vaccines significantly potentiate radiation therapy-mediated tumor growth inhibition. CIRT and XRT alone marginally prime neoAg-specific T cell responses detected in the tumors but not in the blood or spleens of mice. Infiltration and cytotoxicity of neoAg-specific T cells is strongly driven by RNA-LPX vaccines and is accompanied by reduced expression of the inhibitory markers PD-1 and Tim-3 on these cells. The neoAg RNA-LPX vaccine shows similar overall therapeutic efficacy in combination with both CIRT and XRT, even if the physical radiation dose is lower for carbon ions than for X-rays. CONCLUSIONS: We hence conclude that the combination of CIRT and neoAg RNA-LPX vaccines is a promising strategy for the treatment of radioresistant tumors.


Asunto(s)
Antígenos de Neoplasias , Vacunas contra el Cáncer , Neoplasias del Colon , Radioterapia de Iones Pesados , Animales , Neoplasias del Colon/radioterapia , Neoplasias del Colon/inmunología , Ratones , Vacunas contra el Cáncer/uso terapéutico , Vacunas contra el Cáncer/inmunología , Antígenos de Neoplasias/inmunología , Radioterapia de Iones Pesados/métodos , Fotones/uso terapéutico , Femenino , Adenocarcinoma/radioterapia , Adenocarcinoma/inmunología , Terapia Combinada/métodos , Liposomas , Vacunas de ARNm/uso terapéutico , Línea Celular Tumoral , Inmunoterapia/métodos , ARN Mensajero , Ratones Endogámicos C57BL
7.
Pharmaceutics ; 15(8)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37631282

RESUMEN

Lipid nanoparticles (LNPs) have gained great attention as carriers for mRNA-based therapeutics, finding applications in various indications, extending beyond their recent use in vaccines for infectious diseases. However, many aspects of LNP structure and their effects on efficacy are not well characterized. To further exploit the potential of mRNA therapeutics, better control of the relationship between LNP formulation composition with internal structure and transfection efficiency in vitro is necessary. We compared two well-established ionizable lipids, namely DODMA and MC3, in combination with two helper lipids, DOPE and DOPC, and two polymer-grafted lipids, either with polysarcosine (pSar) or polyethylene glycol (PEG). In addition to standard physicochemical characterization (size, zeta potential, RNA accessibility), small-angle X-ray scattering (SAXS) was used to analyze the structure of the LNPs. To assess biological activity, we performed transfection and cell-binding assays in human peripheral blood mononuclear cells (hPBMCs) using Thy1.1 reporter mRNA and Cy5-labeled mRNA, respectively. With the SAXS measurements, we were able to clearly reveal the effects of substituting the ionizable and helper lipid on the internal structure of the LNPs. In contrast, pSar as stealth moieties affected the LNPs in a different manner, by changing the surface morphology towards higher roughness. pSar LNPs were generally more active, where the highest transfection efficiency was achieved with the LNP formulation composition of MC3/DOPE/pSar. Our study highlights the utility of pSar for improved mRNA LNP products and the importance of pSar as a novel stealth moiety enhancing efficiency in future LNP formulation development. SAXS can provide valuable information for the rational development of such novel formulations by elucidating structural features in different LNP compositions.

8.
Nat Cancer ; 4(7): 937-954, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37415076

RESUMEN

The remarkable capacity of immunotherapies to induce durable regression in some patients with metastatic cancer relies heavily on T cell recognition of tumor-presented antigens. As checkpoint-blockade therapy has limited efficacy, tumor antigens have the potential to be exploited for complementary treatments, many of which are already in clinical trials. The surge of interest in this topic has led to the expansion of the tumor antigen landscape with the emergence of new antigen categories. Nonetheless, how different antigens compare in their ability to elicit efficient and safe clinical responses remains largely unknown. Here, we review known cancer peptide antigens, their attributes and the relevant clinical data and discuss future directions.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Neoplasias/terapia , Linfocitos T , Antígenos de Neoplasias
9.
Front Immunol ; 14: 1102282, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969213

RESUMEN

Introduction: The cell line MC38 is a commonly used murine model for colorectal carcinoma. It has a high mutational burden, is sensitive to immune checkpoint immunotherapy and endogenous CD8+ T cell responses against neoantigens have been reported. Methods: Here, we re-sequenced exomes and transcriptomes of MC38 cells from two different sources, namely Kerafast (originating from NCI/NIH, MC38-K) and the Leiden University Medical Center cell line collection (MC38-L), comparing the cell lines on the genomic and transcriptomic level and analyzing their recognition by CD8+ T cells with known neo-epitope specificity. Results: The data reveals a distinct structural composition of MC38-K and MC38-L cell line genomes and different ploidies. Further, the MC38-L cell line harbored about 1.3-fold more single nucleotide variations and small insertions and deletions than the MC38-K cell line. In addition, the observed mutational signatures differed; only 35.3% of the non-synonymous variants and 5.4% of the fusion gene events were shared. Transcript expression values of both cell lines correlated strongly (p = 0.919), but we found different pathways enriched in the genes that were differentially upregulated in the MC38-L or MC38-K cells, respectively. Our data show that previously described neoantigens in the MC38 model such as Rpl18mut and Adpgkmut were absent in the MC38-K cell line resulting that such neoantigen-specific CD8+ T cells recognizing and killing MC38-L cells did not recognize or kill MC38-K cells. Conclusion: This strongly indicates that at least two sub-cell lines of MC38 exist in the field and underlines the importance of meticulous tracking of investigated cell lines to obtain reproducible results, and for correct interpretation of the immunological data without artifacts. We present our analyses as a reference for researchers to select the appropriate sub-cell line for their own studies.


Asunto(s)
Neoplasias Colorrectales , Transcriptoma , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Línea Celular Tumoral , Mutación
10.
Oncoimmunology ; 11(1): 2147665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419823

RESUMEN

Nanoparticles of different sizes formulated with unmodified RNA and Protamine differentially engage Toll-like Receptors (TLRs) and activate innate immune responses in vitro. Here, we report that similar differential immunostimulation that depends on the nanoparticle sizes is induced in vivo in wild type as well as in humanized mice. In addition, we found that the schedule of injections strongly affects the magnitude of the immune response. Immunostimulating 130 nm nanoparticles composed of RNA and Protamine can promote lung metastasis clearance but provides no control of subcutaneous tumors in a CT26 tumor model. We further enhanced the therapeutic capacity of Protamine-RNA nanoparticles by incorporating chemotherapeutic base analogues in the RNA; we coined these immunochemotherapeutic RNAs (icRNAs). Protamine-icRNA nanoparticles were successful at controlling established subcutaneous CT26 and B16 tumors as well as orthotopic glioblastoma. These data indicate that icRNAs are promising cancer therapies, which warrants their further validation for use in the clinic.


Asunto(s)
Antineoplásicos , Glioblastoma , Nanopartículas , Animales , Ratones , ARN , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas/uso terapéutico , Protaminas
11.
Nat Cell Biol ; 24(8): 1265-1277, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941369

RESUMEN

Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.


Asunto(s)
Neoplasias de la Mama , Epigenoma , Empalme Alternativo , Encéfalo/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis de la Neoplasia
12.
J Immunother Cancer ; 10(6)2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35688554

RESUMEN

BACKGROUND: Despite the preclinical promise of CD40 and 4-1BB as immuno-oncology targets, clinical efforts evaluating CD40 and 4-1BB agonists as monotherapy have found limited success. DuoBody-CD40×4-1BB (GEN1042/BNT312) is a novel investigational Fc-inert bispecific antibody for dual targeting and conditional stimulation of CD40 and 4-1BB to enhance priming and reactivation of tumor-specific immunity in patients with cancer. METHODS: Characterization of DuoBody-CD40×4-1BB in vitro was performed in a broad range of functional immune cell assays, including cell-based reporter assays, T-cell proliferation assays, mixed-lymphocyte reactions and tumor-infiltrating lymphocyte assays, as well as live-cell imaging. The in vivo activity of DuoBody-CD40×4-1BB was assessed in blood samples from patients with advanced solid tumors that were treated with DuoBody-CD40×4-1BB in the dose-escalation phase of the first-in-human clinical trial (NCT04083599). RESULTS: DuoBody-CD40×4-1BB exhibited conditional CD40 and 4-1BB agonist activity that was strictly dependent on crosslinking of both targets. Thereby, DuoBody-CD40×4-1BB strengthened the dendritic cell (DC)/T-cell immunological synapse, induced DC maturation, enhanced T-cell proliferation and effector functions in vitro and enhanced expansion of patient-derived tumor-infiltrating lymphocytes ex vivo. The addition of PD-1 blocking antibodies resulted in potentiation of T-cell activation and effector functions in vitro compared with either monotherapy, providing combination rationale. Furthermore, in a first-in-human clinical trial, DuoBody-CD40×4-1BB mediated clear immune modulation of peripheral antigen presenting cells and T cells in patients with advanced solid tumors. CONCLUSION: DuoBody-CD40×4-1BB is capable of enhancing antitumor immunity by modulating DC and T-cell functions and shows biological activity in patients with advanced solid tumors. These findings demonstrate that targeting of these two pathways with an Fc-inert bispecific antibody may be an efficacious approach to (re)activate tumor-specific immunity and support the clinical investigation of DuoBody-CD40×4-1BB for the treatment of cancer.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígenos CD40/metabolismo , Ensayos Clínicos como Asunto , Humanos , Activación de Linfocitos , Neoplasias/terapia , Linfocitos T
13.
Proc Natl Acad Sci U S A ; 119(12): e2122310119, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35290110

RESUMEN

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester­based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug's safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester­based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.


Asunto(s)
Difosfonatos , Cirrosis Hepática , Difosfonatos/farmacología , Humanos , Concentración de Iones de Hidrógeno , Cirrosis Hepática/tratamiento farmacológico , Macrófagos , Nanogeles
14.
Oncoimmunology ; 11(1): 2030135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35186440

RESUMEN

Immune checkpoint inhibitors (ICI) targeting the PD-1/PD-L1 axis have changed the treatment paradigm for advanced solid tumors; however, many patients experience treatment resistance. In preclinical models 4-1BB co-stimulation synergizes with ICI by activating cytotoxic T- and NK-cell-mediated anti-tumor immunity. Here we characterize the mechanism of action of a mouse-reactive Fc-inert PD-L1×4-1BB bispecific antibody (mbsAb-PD-L1×4-1BB) and provide proof-of-concept for enhanced anti-tumor activity. In reporter assays mbsAb-PD-L1×4-1BB exhibited conditional 4-1BB agonist activity that was dependent on simultaneous binding to PD-L1. mbsAb-PD-L1×4-1BB further blocked the PD-L1/PD-1 interaction independently of 4-1BB binding. By combining both mechanisms, mbsAb-PD-L1×4-1BB strongly enhanced T-cell proliferation, cytokine production and antigen-specific cytotoxicity using primary mouse cells in vitro. Furthermore, mbsAb-PD-L1×4-1BB exhibited potent anti-tumor activity in the CT26 and MC38 models in vivo, leading to the rejection of CT26 tumors that were unresponsive to PD-L1 blockade alone. Anti-tumor activity was associated with increased tumor-specific CD8+ T cells and reduced regulatory T cells within the tumor microenvironment and tumor-draining lymph nodes. In immunocompetent tumor-free mice, mbsAb-PD-L1×4-1BB treatment neither induced T-cell infiltration into the liver nor elevated liver enzymes in the blood. Dual targeting of PD-L1 and 4-1BB with a bispecific antibody may therefore address key limitations of first generation 4-1BB-agonistic antibodies, and may provide a novel approach to improve PD-1/PD-L1 checkpoint blockade.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/uso terapéutico , Microambiente Tumoral
15.
Hum Vaccin Immunother ; 18(1): 2024416, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-35130105

RESUMEN

After one year of absence, the 18th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), Europe's cancer immunotherapy meeting, took place virtually from 10 to 12 May 2021. Over 850 academic and clinical professionals from 30 countries met to discuss the recent advancements in cancer immunotherapy and the current progress in COVID19-related research. This meeting report summarizes the highlights of CIMT2021.


Asunto(s)
COVID-19 , Neoplasias , Humanos , Inmunoterapia , Neoplasias/terapia , Microambiente Tumoral
16.
Cancer Discov ; 12(5): 1248-1265, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35176764

RESUMEN

Checkpoint inhibitors (CPI) have revolutionized the treatment paradigm for advanced solid tumors; however, there remains an opportunity to improve response rates and outcomes. In preclinical models, 4-1BB costimulation synergizes with CPIs targeting the programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) axis by activating cytotoxic T-cell-mediated antitumor immunity. DuoBody-PD-L1×4-1BB (GEN1046) is an investigational, first-in-class bispecific immunotherapy agent designed to act on both pathways by combining simultaneous and complementary PD-L1 blockade and conditional 4-1BB stimulation in one molecule. GEN1046 induced T-cell proliferation, cytokine production, and antigen-specific T-cell-mediated cytotoxicity superior to clinically approved PD-(L)1 antibodies in human T-cell cultures and exerted potent antitumor activity in transplantable mouse tumor models. In dose escalation of the ongoing first-in-human study in heavily pretreated patients with advanced refractory solid tumors (NCT03917381), GEN1046 demonstrated pharmacodynamic immune effects in peripheral blood consistent with its mechanism of action, manageable safety, and early clinical activity [disease control rate: 65.6% (40/61)], including patients resistant to prior PD-(L)1 immunotherapy. SIGNIFICANCE: DuoBody-PD-L1×4-1BB (GEN1046) is a first-in-class bispecific immunotherapy with a manageable safety profile and encouraging preclinical and early clinical activity. With its ability to confer clinical benefit in tumors typically less sensitive to CPIs, GEN1046 may fill a clinical gap in CPI-relapsed or refractory disease or as a combination therapy with CPIs. See related commentary by Li et al., p. 1184. This article is highlighted in the In This Issue feature, p. 1171.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Animales , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1 , Modelos Animales de Enfermedad , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Linfocitos T
17.
Cancer Immunol Immunother ; 71(8): 1975-1988, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34971406

RESUMEN

Human papilloma virus (HPV) infection is a causative agent for several cancers types (genital, anal and head and neck region). The HPV E6 and E7 proteins are oncogenic drivers and thus are ideal candidates for therapeutic vaccination. We recently reported that a novel ribonucleic acid lipoplex (RNA-LPX)-based HPV16 vaccine, E7 RNA-LPX, mediates regression of mouse HPV16+ tumors and establishes protective T cell memory. An HPV16 E6/E7 RNA-LPX vaccine is currently being investigated in two phase I and II clinical trials in various HPV-driven cancer types; however, it remains a high unmet medical need for treatments for patients with radiosensitive HPV16+ tumors. Therefore, we set out to investigate the therapeutic efficacy of E7 RNA-LPX vaccine combined with standard-of-care local radiotherapy (LRT). We demonstrate that E7 RNA-LPX synergizes with LRT in HPV16+ mouse tumors, with potent therapeutic effects exceeding those of either monotherapy. Mode of action studies revealed that the E7 RNA-LPX vaccine induced high numbers of intratumoral-E7-specific CD8+ T cells, rendering cold tumors immunologically hot, whereas LRT primarily acted as a cytotoxic therapy, reducing tumor mass and intratumor hypoxia by predisposing tumor cells to antigen-specific T cell-mediated killing. Overall, LRT enhanced the effector function of E7 RNA-LPX-primed T cell responses. The therapeutic synergy was dependent on total radiation dose, rather than radiation dose-fractionation. Together, these results show that LRT synergizes with E7 RNA-LPX and enhances its anti-tumor activity against HPV16+ cancer models. This work paves into a new translational therapy for HPV16+ cancer patients.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Vacunas contra Papillomavirus , Neoplasias del Cuello Uterino , Animales , Linfocitos T CD8-positivos , Femenino , Papillomavirus Humano 16/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , ARN , Vacunación
18.
ACS Biomater Sci Eng ; 7(12): 5622-5632, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34734689

RESUMEN

Synthetic cancer vaccines may boost anticancer immune responses by co-delivering tumor antigens and adjuvants to dendritic cells (DCs). The accessibility of cancer vaccines to DCs and thereby the delivery efficiency of antigenic material greatly depends on the vaccine platform that is used. Three-dimensional scaffolds have been developed to deliver antigens and adjuvants locally in an immunostimulatory environment to DCs to enable sustained availability. However, current systems have little control over the release profiles of the cargo that is incorporated and are often characterized by an initial high-burst release. Here, an alternative system is designed that co-delivers antigens and adjuvants to DCs through cargo-loaded nanoparticles (NPs) incorporated within biomaterial-based scaffolds. This creates a programmable system with the potential for controlled delivery of their cargo to DCs. Cargo-loaded poly(d,l-lactic-co-glycolic acid) NPs are entrapped within the polymer walls of alginate cryogels with high efficiency while retaining the favorable physical properties of cryogels, including syringe injection. DCs cultured within these NP-loaded scaffolds acquire strong antigen-specific T cell-activating capabilities. These findings demonstrate that introduction of NPs into the walls of macroporous alginate cryogels creates a fully synthetic immunostimulatory niche that stimulates DCs and evokes strong antigen-specific T cell responses.


Asunto(s)
Vacunas contra el Cáncer , Ácido Poliglicólico , Células Dendríticas , Ácido Láctico , Linfocitos T
19.
J Transl Med ; 19(1): 482, 2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34838059

RESUMEN

BACKGROUND: CAR T-cell therapy has been recently unveiled as one of the most promising cancer therapies in hematological malignancies. However, solid tumors mount a profound line of defense to escape immunosurveillance by CAR T-cells. Among them, cytokines with an inhibitory impact on the immune system such as IL-10 and TGFß are of great importance: TGFß is a pleiotropic cytokine, which potently suppresses the immune system and is secreted by a couple of TME resident and tumor cells. METHODS: In this study, we hypothesized that knocking out the TGFß receptor II gene, could improve CAR T-cell functions in vitro and in vivo. Hereby, we used the CRISPR/Cas9 system, to knockout the TGFßRII gene in T-cells and could monitor the efficient gene knock out by genome analysis techniques. Next, Mesothelin or Claudin 6 specific CAR constructs were overexpressed via IVT-RNA electroporation or retroviral transduction and the poly-functionality of these TGFßRII KO CAR T-cells in terms of proliferation, cytokine secretion and cytotoxicity were assessed and compared with parental CAR T-cells. RESULTS: Our experiments demonstrated that TGFßRII KO CAR T-cells fully retained their capabilities in killing tumor antigen positive target cells and more intriguingly, could resist the anti-proliferative effect of exogenous TGFß in vitro outperforming wild type CAR T-cells. Noteworthy, no antigen or growth factor-independent proliferation of these TGFßRII KO CAR T-cells has been recorded. TGFßRII KO CAR T-cells also resisted the suppressive effect of induced regulatory T-cells in vitro to a larger extent. Repetitive antigen stimulation demonstrated that these TGFßRII KO CAR T-cells will experience less activation induced exhaustion in comparison to the WT counterpart. CONCLUSION: The TGFßRII KO approach may become an indispensable tool in immunotherapy of solid tumors, as it may surmount one of the key negative regulatory signaling pathways in T-cells.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Sistemas CRISPR-Cas/genética , Humanos , Inmunoterapia Adoptiva , Mesotelina , Neoplasias/genética , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo
20.
Sci Transl Med ; 13(610): eabc7804, 2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34516826

RESUMEN

Local immunotherapy ideally stimulates immune responses against tumors while avoiding toxicities associated with systemic administration. Current strategies for tumor-targeted, gene-based delivery, however, are limited by adverse effects such as off-targeting or antivector immunity. We investigated the intratumoral administration of saline-formulated messenger (m)RNA encoding four cytokines that were identified as mediators of tumor regression across different tumor models: interleukin-12 (IL-12) single chain, interferon-α (IFN-α), granulocyte-macrophage colony-stimulating factor, and IL-15 sushi. Effective antitumor activity of these cytokines relied on multiple immune cell populations and was accompanied by intratumoral IFN-γ induction, systemic antigen-specific T cell expansion, increased granzyme B+ T cell infiltration, and formation of immune memory. Antitumor activity extended beyond the treated lesions and inhibited growth of distant tumors and disseminated tumors. Combining the mRNAs with immunomodulatory antibodies enhanced antitumor responses in both injected and uninjected tumors, thus improving survival and tumor regression. Consequently, clinical testing of this cytokine-encoding mRNA mixture is now underway.


Asunto(s)
Citocinas , Neoplasias , Citocinas/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA