Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biochemistry ; 59(26): 2450-2458, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32510930

RESUMEN

Thiol dioxygenases are mononuclear non-heme FeII-dependent metalloenzymes that initiate the oxidative catabolism of thiol-containing substrates to their respective sulfinates. Cysteine dioxygenase (CDO), the best characterized mammalian thiol dioxygenase, contains a three-histidine (3-His) coordination environment rather than the 2-His-1-carboxylate facial triad seen in most mononuclear non-heme FeII enzymes. A similar 3-His active site is found in the bacterial thiol dioxygenase 3-mercaptopropionate dioxygenase (MDO), which converts 3-mercaptopropionate into 3-sulfinopropionic acid as part of the bacterial sulfur metabolism pathway. In this study, we have investigated the active site geometric and electronic structures of a third non-heme FeII-dependent thiol dioxygenase, cysteamine dioxygenase (ADO), by using a spectroscopic approach. Although a 3-His facial triad had previously been implicated on the basis of sequence alignment and site-directed mutagenesis studies, little is currently known about the active site environment of ADO. Our magnetic circular dichroism and electron paramagnetic resonance data provide compelling evidence that ADO features a 3-His facial triad, like CDO and MDO. Despite this similar coordination environment, spectroscopic results obtained for ADO incubated with various substrate analogues are distinct from those obtained for the other FeII-dependent thiol dioxygenases. This finding suggests that the secondary coordination sphere of ADO is distinct from those of CDO and MDO, demonstrating the significant role that secondary-sphere residues play in dictating substrate specificity.


Asunto(s)
Dioxigenasas/química , Hierro/química , Mutación Missense , Sustitución de Aminoácidos , Animales , Dominio Catalítico , Dioxigenasas/genética , Espectroscopía de Resonancia por Spin del Electrón , Hierro/metabolismo , Ratones , Mutagénesis Sitio-Dirigida
2.
J Mol Biol ; 423(1): 47-62, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22743102

RESUMEN

The proprotein convertases (PCs) furin and proprotein convertase 1/3 (PC1) cleave substrates at dibasic residues along the eukaryotic secretory/endocytic pathway. PCs are evolutionarily related to bacterial subtilisin and are synthesized as zymogens. They contain N-terminal propeptides (PRO) that function as dedicated catalysts that facilitate folding and regulate activation of cognate proteases through multiple-ordered cleavages. Previous studies identified a histidine residue (His69) that functions as a pH sensor in the propeptide of furin (PRO(FUR)), which regulates furin activation at pH~6.5 within the trans-Golgi network. Although this residue is conserved in the PC1 propeptide (PRO(PC1)), PC1 nonetheless activates at pH~5.5 within the dense core secretory granules. Here, we analyze the mechanism by which PRO(FUR) regulates furin activation and examine why PRO(FUR) and PRO(PC1) differ in their pH-dependent activation. Sequence analyses establish that while both PRO(FUR) and PRO(PC1) are enriched in histidines when compared with cognate catalytic domains and prokaryotic orthologs, histidine content in PRO(FUR) is ~2-fold greater than that in PRO(PC1), which may augment its pH sensitivity. Spectroscopy and molecular dynamics establish that histidine protonation significantly unfolds PRO(FUR) when compared to PRO(PC1) to enhance autoproteolysis. We further demonstrate that PRO(FUR) and PRO(PC1) are sufficient to confer organelle sensing on folding and activation of their cognate proteases. Swapping propeptides between furin and PC1 transfers pH-dependent protease activation in a propeptide-dictated manner in vitro and in cells. Since prokaryotes lack organelles and eukaryotic PCs evolved from propeptide-dependent, not propeptide-independent prokaryotic subtilases, our results suggest that histidine enrichment may have enabled propeptides to evolve to exploit pH gradients to activate within specific organelles.


Asunto(s)
Furina/metabolismo , Proproteína Convertasa 1/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Evolución Molecular , Furina/química , Furina/genética , Histidina/química , Humanos , Concentración de Iones de Hidrógeno , Ratones , Datos de Secuencia Molecular , Orgánulos/metabolismo , Péptidos/química , Péptidos/metabolismo , Proproteína Convertasa 1/química , Proproteína Convertasa 1/genética , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA